forked from ai-dawang/PlugNPlay-Modules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path(ACCV 2022)CSCA.py
260 lines (211 loc) · 10.1 KB
/
(ACCV 2022)CSCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch.nn as nn
import torch
from torch.nn import functional as F
import numpy as np
# 论文:Spatio-channel Attention Blocks for Cross-modal Crowd Counting
# 论文地址:https://arxiv.org/pdf/2210.10392
class FusionModel(nn.Module):
def __init__(self, ratio=0.6):
super(FusionModel, self).__init__()
c1 = int(64 * ratio)# 38, ratio=0.6
c2 = int(128 * ratio)# 76
c3 = int(256 * ratio)# 153
c4 = int(512 * ratio)# 307
self.block1_depth = Block([c1, c1, 'M'], in_channels=3, L=4, first_block=True, D_in_channels=True)
self.block1 = Block([c1, c1, 'M'], in_channels=3, L=4, first_block=True, D_in_channels=False)
self.block2 = Block([c2, c2, 'M'], in_channels=c1, L=3)
self.block3 = Block([c3, c3, c3, c3, 'M'], in_channels=c2, L=2)
self.block4 = Block([c4, c4, c4, c4, 'M'], in_channels=c3, L=1)
self.block5 = Block([c4, c4, c4, c4], in_channels=c4, L=1)
self.reg_layer = nn.Sequential(
nn.Conv2d(c4, c3, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(c3, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 1, 1)
)
self._initialize_weights()
def forward(self, RGBT, dataset):
RGB = RGBT[0]
T = RGBT[1]
if dataset == 'ShanghaiTechRGBD':
RGB, T, shared = self.block1_depth(RGB, T)
else:
RGB, T, shared = self.block1(RGB, T)
RGB, T, shared = self.block2(RGB, T)
RGB, T, shared = self.block3(RGB, T)
RGB, T, shared = self.block4(RGB, T)
_, _, shared = self.block5(RGB, T)
x = shared
x = F.upsample_bilinear(x, scale_factor=2)
x = self.reg_layer(x)
return torch.abs(x)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
class Block(nn.Module):
def __init__(self, cfg, in_channels, L, first_block=False, dilation_rate=1, D_in_channels=False):
super(Block, self).__init__()
self.seen = 0
self.first_block = first_block
self.d_rate = dilation_rate
self.L = L
if first_block:
if D_in_channels:
t_in_channels = 1
else:
t_in_channels = in_channels
else:
t_in_channels = in_channels
self.rgb_conv = make_layers(cfg, in_channels=in_channels, d_rate=self.d_rate)
self.t_conv = make_layers(cfg, in_channels=t_in_channels, d_rate=self.d_rate)
if first_block is False:
self.shared_conv = make_layers(cfg, in_channels=in_channels, d_rate=self.d_rate)
channels = cfg[0]
self.out_channels = channels//2
self.rgb_msc = MSC(channels)
self.t_msc = MSC(channels)
self.RGB_key = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=self.out_channels,
kernel_size=1, stride=1, padding=0), nn.Dropout(0.5),
nn.BatchNorm2d(self.out_channels), nn.ReLU(),
)
self.RGB_query = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=self.out_channels,
kernel_size=1, stride=1, padding=0), nn.Dropout(0.5),
nn.BatchNorm2d(self.out_channels), nn.ReLU(),
)
self.RGB_value = nn.Conv2d(in_channels=channels, out_channels=self.out_channels,
kernel_size=1, stride=1, padding=0)
self.RGB_W = nn.Conv2d(in_channels=self.out_channels, out_channels=channels,
kernel_size=1, stride=1, padding=0)
self.T_key = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=self.out_channels,
kernel_size=1, stride=1, padding=0), nn.Dropout(0.5),
nn.BatchNorm2d(self.out_channels), nn.ReLU(),
)
self.T_query = nn.Sequential(
nn.Conv2d(in_channels=channels, out_channels=self.out_channels,
kernel_size=1, stride=1, padding=0), nn.Dropout(0.5),
nn.BatchNorm2d(self.out_channels), nn.ReLU(),
)
self.T_value = nn.Conv2d(in_channels=channels, out_channels=self.out_channels,
kernel_size=1, stride=1, padding=0)
self.T_W = nn.Conv2d(in_channels=self.out_channels, out_channels=channels,
kernel_size=1, stride=1, padding=0)
self.gate_RGB = nn.Conv2d(channels * 2, 1, kernel_size=1, bias=True)
self.gate_T = nn.Conv2d(channels * 2, 1, kernel_size=1, bias=True)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, RGB, T):
RGB = self.rgb_conv(RGB)
T = self.t_conv(T)
new_RGB, new_T, new_shared = self.fuse(RGB, T)
return new_RGB, new_T, new_shared
def fuse(self, RGB, T):
RGB_m = self.rgb_msc(RGB)
T_m = self.t_msc(T)
# SCA Block
adapt_channels = 2 ** self.L * self.out_channels
batch_size = RGB_m.size(0)
rgb_query = self.RGB_query(RGB_m).view(batch_size, adapt_channels, -1).permute(0, 2, 1)
rgb_key = self.RGB_key(RGB_m).view(batch_size, adapt_channels, -1)
rgb_value = self.RGB_value(RGB_m).view(batch_size, adapt_channels, -1).permute(0, 2, 1)
batch_size = T_m.size(0)
T_query = self.T_query(T_m).view(batch_size, adapt_channels, -1).permute(0, 2, 1)
T_key = self.T_key(T_m).view(batch_size, adapt_channels, -1)
T_value = self.T_value(T_m).view(batch_size, adapt_channels, -1).permute(0, 2, 1)
RGB_sim_map = torch.matmul(T_query, rgb_key)
RGB_sim_map = (adapt_channels ** -.5) * RGB_sim_map
RGB_sim_map = F.softmax(RGB_sim_map, dim=-1)
RGB_context = torch.matmul(RGB_sim_map, rgb_value)
RGB_context = RGB_context.permute(0, 2, 1).contiguous()
RGB_context = RGB_context.view(batch_size, self.out_channels, *RGB_m.size()[2:])
RGB_context = self.RGB_W(RGB_context)
T_sim_map = torch.matmul(rgb_query, T_key)
T_sim_map = (adapt_channels ** -.5) * T_sim_map
T_sim_map = F.softmax(T_sim_map, dim=-1)
T_context = torch.matmul(T_sim_map, T_value)
T_context = T_context.permute(0, 2, 1).contiguous()
T_context = T_context.view(batch_size, self.out_channels, *T_m.size()[2:])
T_context = self.T_W(T_context)
# CFA Block
cat_fea = torch.cat([T_context, RGB_context], dim=1)
attention_vector_RGB = self.gate_RGB(cat_fea)
attention_vector_T = self.gate_T(cat_fea)
attention_vector = torch.cat([attention_vector_RGB, attention_vector_T], dim=1)
attention_vector = self.softmax(attention_vector)
attention_vector_RGB, attention_vector_T = attention_vector[:, 0:1, :, :], attention_vector[:, 1:2, :, :]
new_shared = RGB * attention_vector_RGB + T * attention_vector_T
new_RGB = (RGB + new_shared) / 2
new_T = (T + new_shared) / 2
new_RGB = self.relu1(new_RGB)
new_T = self.relu2(new_T)
return new_RGB, new_T, new_shared
class MSC(nn.Module):
def __init__(self, channels):
super(MSC, self).__init__()
self.channels = channels
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=4, stride=4)
self.conv = nn.Sequential(
nn.Conv2d(3*channels, channels, kernel_size=1),
nn.ReLU(inplace=True)
)
def forward(self, x):
x1 = nn.functional.interpolate(self.pool1(x), x.shape[2:])
x2 = nn.functional.interpolate(self.pool2(x), x.shape[2:])
concat = torch.cat([x, x1, x2], 1)
fusion = self.conv(concat)
return fusion
def fusion_model():
model = FusionModel()
return model
def make_layers(cfg, in_channels=3, batch_norm=False, d_rate=False):
layers = []
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=d_rate, dilation=d_rate)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
# ------------------------------------------------------------------------------------------------------------------------
def Test_block():
# 配置参数
cfg = [64, 64, 'M'] # 示例配置
in_channels = 3 # 输入通道数
L = 4 # 该参数用于 adapt_channels 的计算
first_block = True # 标识是否是第一个 block
dilation_rate = 1 # 膨胀率
D_in_channels = False # 标识是否使用深度输入通道
# 创建 Block 实例
block = Block(cfg, in_channels, L, first_block, dilation_rate, D_in_channels)
# 生成模拟的 RGB 和 T 输入数据
batch_size = 8
height = 64
width = 64
RGB = torch.randn(batch_size, in_channels, height, width)
T = torch.randn(batch_size, in_channels, height, width)
# 前向传播
new_RGB, new_T, new_shared = block(RGB, T)
return RGB, T, new_RGB, new_T, new_shared
if __name__ == '__main__':
RGB, T, new_RGB, new_T, new_shared = Test_block()
print("Input RGB shape:", RGB.size())
print("Input T shape:", T.size())
print("Output new_RGB shape:", new_RGB.size())
print("Output new_T shape:", new_T.size())
print("Output new_shared shape:", new_shared.size())