-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathutils.py
242 lines (202 loc) · 8.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import re
import clipboard
import tiktoken
import io
from PIL import Image, ImageGrab
import base64
import json
import os
import time
def read_clipboard(model_supports_images=True):
"""Read text or image from clipboard."""
# Try to grab an image from the clipboard
if model_supports_images:
try:
image = ImageGrab.grabclipboard()
if image:
processed_image = process_image(image)
if processed_image:
return {'type': 'image', 'content': processed_image}
except Exception as e:
print(f"Error processing image from clipboard: {e}")
# If no image is found, try to get text
clipboard_content = clipboard.paste()
if isinstance(clipboard_content, str) and clipboard_content:
# It's text
return {'type': 'text', 'content': clipboard_content}
print("No valid content found in clipboard.")
return None
def to_clipboard(text):
"""
Copy the given text to the clipboard.
Args:
text (str): The text to be copied to the clipboard.
"""
clipboard.copy(extract_code_if_only_code_block(text))
def sanitize_text(text):
"""
Remove disallowed characters from a string and replace certain symbols with their text equivalents.
Args:
text (str): The text to be sanitized.
Returns:
str: The sanitized text.
"""
disallowed_chars = '"<>[]{}|\\~`^*!#$()_;'
symbol_text_pairs = [
(' & ', ' and '),
(' % ', ' percent '),
(' @ ', ' at '),
(' = ', ' equals '),
(' + ', ' plus '),
(' / ', ' slash '),
]
sanitized_text = ''.join(filter(lambda x: x not in disallowed_chars, text))
for symbol, text_equivalent in symbol_text_pairs:
sanitized_text = sanitized_text.replace(symbol, text_equivalent)
return sanitized_text
def _trim_messages(messages, max_tokens):
"""
Trim the messages to fit within the maximum token limit.
Args:
messages (list): A list of messages to be trimmed.
max_tokens (int): The maximum number of tokens allowed.
Returns:
list: The trimmed list of messages.
"""
msg_token_count = 0
while True:
msg_token_count = _count_tokens(messages)
if msg_token_count <= max_tokens:
break
# Remove the oldest non-system message
for i in range(len(messages)):
if messages[i].get('role') != 'system':
del messages[i]
break
# Ensure the first non-system message is from the user
first_non_system_msg_index = next((i for i, message in enumerate(messages) if message.get('role') != 'system'), None)
while first_non_system_msg_index is not None and messages[first_non_system_msg_index].get('role') == 'assistant':
del messages[first_non_system_msg_index]
first_non_system_msg_index = next((i for i, message in enumerate(messages) if message.get('role') != 'system'), None)
return messages
def _count_tokens(messages, model="gpt-3.5-turbo"):
"""
Count the tokens in the given messages using the specified model.
Args:
messages (list): A list of messages to count tokens from.
model (str): The model to use for token counting. Defaults to "gpt-3.5-turbo".
Returns:
int: The total count of tokens in the messages.
"""
enc = tiktoken.encoding_for_model(model)
msg_token_count = 0
for message in messages:
for key, value in message.items():
if isinstance(value, str):
msg_token_count += len(enc.encode(value))
elif isinstance(value, list):
for item in value:
if isinstance(item, dict):
if item.get('type') == 'image':
msg_token_count += 85 # Approximate token count for an image
elif item.get('type') == 'text':
msg_token_count += len(enc.encode(item.get('text', '')))
elif isinstance(item, str):
msg_token_count += len(enc.encode(item))
return msg_token_count
def maintain_token_limit(messages, max_tokens):
"""
Maintain the token limit by trimming messages if the token count exceeds the maximum limit.
Args:
messages (list): A list of messages to maintain.
max_tokens (int): The maximum number of tokens allowed.
Returns:
list: The trimmed list of messages.
"""
if _count_tokens(messages) > max_tokens:
messages = _trim_messages(messages, max_tokens)
return messages
def extract_code_if_only_code_block(markdown_text):
"""
Extracts the code from a markdown text if the text only contains a single code block.
Args:
markdown_text (str): The markdown text to extract the code from.
Returns:
str: The extracted code if the markdown text only contains a single code block,
otherwise the original markdown text.
"""
stripped_text = markdown_text.strip()
# Define the regex pattern
pattern = r'^```(?:\w+)?\n([\s\S]*?)```$'
# Search for the pattern
match = re.match(pattern, stripped_text)
if match:
# Extract and return the code block
return match.group(1)
else:
# Return the original text if it doesn't match the pattern
return markdown_text
def process_image(image):
"""Resize and encode image for LLM input."""
try:
max_size = (1024, 1024)
image.thumbnail(max_size, Image.LANCZOS)
# Convert image to RGB if it's not already
if image.mode != 'RGB':
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="JPEG", quality=85, subsampling=0, progressive=True)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
except Exception as e:
print(f"Error processing image: {e}")
return None
def does_model_support_images(model_name: str) -> bool:
try:
# Get the directory of the current file
current_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the path to the JSON file
json_path = os.path.join(current_dir, 'image_supported_models.json')
# Read the JSON file
with open(json_path, 'r') as file:
supported_models = json.load(file)
# Check if the model name is in the supported_models list
result = model_name in supported_models['supported_models']
return result
except Exception as e:
print(f"Error reading or parsing the supported models file: {e}")
return False
def handle_clipboard_image(AR, message_content):
"""Handle clipboard image and return content if image exists."""
if hasattr(AR, 'clipboard_image') and AR.clipboard_image:
content = [
{
"type": "image",
"source": {
"type": "base64",
"media_type": "image/jpeg",
"data": AR.clipboard_image.replace('\n', '')
}
},
{
"type": "text",
"text": message_content + "\n\nTHE USER HAS GRANTED YOU ACCESS TO AN IMAGE FROM THEIR CLIPBOARD. ANALYZE AND BRIEFLY DESCRIBE THE IMAGE IF RELEVANT TO THE CONVERSATION."
}
]
AR.clipboard_image = None
return content
return None
def handle_clipboard_text(AR, message_content):
"""Append clipboard text to the message content if new clipboard text exists."""
if AR.clipboard_text and AR.clipboard_text != AR.last_clipboard_text:
message_content += f"\n\nTHE USER HAS GRANTED YOU ACCESS TO THEIR CLIPBOARD, THIS IS ITS CONTENT (ignore if user doesn't mention it):\n```{AR.clipboard_text}```"
AR.last_clipboard_text = AR.clipboard_text
AR.clipboard_text = None
return message_content
def add_timestamp_to_message(message_content):
"""Add a timestamp to the message content."""
timestamp = f"\n\nMESSAGE TIMESTAMP:{time.strftime('%I:%M %p')} {time.strftime('%Y-%m-%d (%A)')} "
if isinstance(message_content, list):
message_content[-1]['text'] += timestamp
else:
message_content += timestamp
return message_content