forked from ML-and-AI-repo/ConSinGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_train.py
114 lines (96 loc) · 4.46 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import datetime
import dateutil.tz
import os
import os.path as osp
from shutil import copyfile, copytree
import glob
import time
import random
import torch
from ConSinGAN.config import get_arguments
import ConSinGAN.functions as functions
def get_scale_factor(opt):
opt.scale_factor = 1.0
num_scales = math.ceil((math.log(math.pow(opt.min_size / (min(real.shape[2], real.shape[3])), 1), opt.scale_factor_init))) + 1
opt.scale_factor_init = opt.scale_factor
if opt.num_training_scales > 0:
while num_scales > opt.num_training_scales:
opt.scale_factor_init = opt.scale_factor_init - 0.01
num_scales = math.ceil((math.log(math.pow(opt.min_size / (min(real.shape[2], real.shape[3])), 1), opt.scale_factor_init))) + 1
return opt.scale_factor_init
# noinspection PyInterpreter
if __name__ == '__main__':
parser = get_arguments()
parser.add_argument('--input_name', help='input image name for training', required=True)
parser.add_argument('--naive_img', help='naive input image (harmonization or editing)', default="")
parser.add_argument('--gpu', type=int, help='which GPU to use', default=0)
parser.add_argument('--train_mode', default='generation',
choices=['generation', 'retarget', 'harmonization', 'editing'],
help="generation, retarget, harmonization, editing")
parser.add_argument('--lr_scale', type=float, help='scaling of learning rate for lower stages', default=0.1)
parser.add_argument('--train_stages', type=int, help='how many stages to use for training', default=6)
parser.add_argument('--fine_tune', action='store_true', help='whether to fine tune on a given image', default=0)
parser.add_argument('--model_dir', help='model to be used for fine tuning (harmonization or editing)', default="")
opt = parser.parse_args()
opt = functions.post_config(opt)
if opt.fine_tune:
_gpu = opt.gpu
_model_dir = opt.model_dir
_timestamp = opt.timestamp
_naive_img = opt.naive_img
_niter = opt.niter
opt = functions.load_config(opt)
opt.gpu = _gpu
opt.model_dir = _model_dir
opt.start_scale = opt.train_stages - 1
opt.timestamp = _timestamp
opt.fine_tune = True
opt.naive_img = _naive_img
opt.niter = _niter
if not os.path.exists(opt.input_name):
print("Image does not exist: {}".format(opt.input_name))
print("Please specify a valid image.")
exit()
if torch.cuda.is_available():
torch.cuda.set_device(opt.gpu)
if opt.train_mode == "generation" or opt.train_mode == "retarget":
from ConSinGAN.training_generation import *
elif opt.train_mode == "harmonization" or opt.train_mode == "editing":
if opt.fine_tune:
if opt.model_dir == "":
print("Model for fine tuning not specified.")
print("Please use --model_dir to define model location.")
exit()
else:
if not os.path.exists(opt.model_dir):
print("Model does not exist: {}".format(opt.model_dir))
print("Please specify a valid model.")
exit()
if not os.path.exists(opt.naive_img):
print("Image for harmonization/editing not found: {}".format(opt.naive_img))
exit()
from ConSinGAN.training_harmonization_editing import *
dir2save = functions.generate_dir2save(opt)
if osp.exists(dir2save):
print('Trained model already exist: {}'.format(dir2save))
exit()
# create log dir
try:
os.makedirs(dir2save)
except OSError:
pass
# save hyperparameters and code files
with open(osp.join(dir2save, 'parameters.txt'), 'w') as f:
for o in opt.__dict__:
f.write("{}\t-\t{}\n".format(o, opt.__dict__[o]))
current_path = os.path.dirname(os.path.abspath(__file__))
for py_file in glob.glob(osp.join(current_path, "*.py")):
copyfile(py_file, osp.join(dir2save, py_file.split("/")[-1]))
copytree(osp.join(current_path, "ConSinGAN"), osp.join(dir2save, "ConSinGAN"))
# train model
print("Training model ({})".format(dir2save))
start = time.time()
train(opt)
end = time.time()
elapsed_time = end - start
print("Time for training: {} seconds".format(elapsed_time))