forked from ML-and-AI-repo/ConSinGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_model.py
117 lines (94 loc) · 5.52 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import torch
import torch.nn as nn
import math
import matplotlib.pyplot as plt
from ConSinGAN.config import get_arguments
import ConSinGAN.functions as functions
import ConSinGAN.models as models
from ConSinGAN.imresize import imresize, imresize_to_shape
def make_dir(path):
try:
os.makedirs(path)
except OSError:
pass
def generate_samples(netG, reals_shapes, noise_amp, scale_w=1.0, scale_h=1.0, reconstruct=False, n=50):
if reconstruct:
reconstruction = netG(fixed_noise, reals_shapes, noise_amp)
if opt.train_mode == "generation" or opt.train_mode == "retarget":
functions.save_image('{}/reconstruction.jpg'.format(dir2save), reconstruction.detach())
functions.save_image('{}/real_image.jpg'.format(dir2save), reals[-1].detach())
elif opt.train_mode == "harmonization" or opt.train_mode == "editing":
functions.save_image('{}/{}_wo_mask.jpg'.format(dir2save, _name), reconstruction.detach())
functions.save_image('{}/real_image.jpg'.format(dir2save), imresize_to_shape(real, reals_shapes[-1][2:], opt).detach())
return reconstruction
if scale_w == 1. and scale_h == 1.:
dir2save_parent = os.path.join(dir2save, "random_samples")
else:
reals_shapes = [[r_shape[0], r_shape[1], int(r_shape[2]*scale_h), int(r_shape[3]*scale_w)] for r_shape in reals_shapes]
dir2save_parent = os.path.join(dir2save, "random_samples_scale_h_{}_scale_w_{}".format(scale_h, scale_w))
make_dir(dir2save_parent)
for idx in range(n):
noise = functions.sample_random_noise(opt.train_stages - 1, reals_shapes, opt)
sample = netG(noise, reals_shapes, noise_amp)
functions.save_image('{}/gen_sample_{}.jpg'.format(dir2save_parent, idx), sample.detach())
if __name__ == '__main__':
parser = get_arguments()
parser.add_argument('--model_dir', help='input image name', required=True)
parser.add_argument('--gpu', type=int, help='which GPU', default=0)
parser.add_argument('--num_samples', type=int, help='which GPU', default=50)
parser.add_argument('--naive_img', help='naive input image (harmonization or editing)', default="")
opt = parser.parse_args()
_gpu = opt.gpu
_naive_img = opt.naive_img
__model_dir = opt.model_dir
opt = functions.load_config(opt)
opt.gpu = _gpu
opt.naive_img = _naive_img
opt.model_dir = __model_dir
if torch.cuda.is_available():
torch.cuda.set_device(opt.gpu)
opt.device = "cuda:{}".format(opt.gpu)
dir2save = os.path.join(opt.model_dir, "Evaluation")
make_dir(dir2save)
print("Loading models...")
netG = torch.load('%s/G.pth' % opt.model_dir, map_location="cuda:{}".format(torch.cuda.current_device()))
fixed_noise = torch.load('%s/fixed_noise.pth' % opt.model_dir, map_location="cuda:{}".format(torch.cuda.current_device()))
reals = torch.load('%s/reals.pth' % opt.model_dir, map_location="cuda:{}".format(torch.cuda.current_device()))
noise_amp = torch.load('%s/noise_amp.pth' % opt.model_dir, map_location="cuda:{}".format(torch.cuda.current_device()))
reals_shapes = [r.shape for r in reals]
if opt.train_mode == "generation" or opt.train_mode == "retarget":
print("Generating Samples...")
with torch.no_grad():
# # generate reconstruction
generate_samples(netG, reals_shapes, noise_amp, reconstruct=True)
# generate random samples of normal resolution
rs0 = generate_samples(netG, reals_shapes, noise_amp, n=opt.num_samples)
# generate random samples of different resolution
generate_samples(netG, reals_shapes, noise_amp, scale_w=2, scale_h=1, n=opt.num_samples)
generate_samples(netG, reals_shapes, noise_amp, scale_w=1, scale_h=2, n=opt.num_samples)
generate_samples(netG, reals_shapes, noise_amp, scale_w=2, scale_h=2, n=opt.num_samples)
elif opt.train_mode == "harmonization" or opt.train_mode == "editing":
opt.noise_scaling = 0.1
_name = "harmonized" if opt.train_mode == "harmonization" else "edited"
real = functions.read_image_dir(opt.naive_img, opt)
real = imresize_to_shape(real, reals_shapes[0][2:], opt)
fixed_noise[0] = real
if opt.train_mode == "editing":
fixed_noise[0] = fixed_noise[0] + opt.noise_scaling * \
functions.generate_noise([opt.nc_im, fixed_noise[0].shape[2],
fixed_noise[0].shape[3]],
device=opt.device)
out = generate_samples(netG, reals_shapes, noise_amp, reconstruct=True)
mask_file_name = '{}_mask{}'.format(opt.naive_img[:-4], opt.naive_img[-4:])
if os.path.exists(mask_file_name):
mask = functions.read_image_dir(mask_file_name, opt)
if mask.shape[3] != out.shape[3]:
mask = imresize_to_shape(mask, [out.shape[2], out.shape[3]], opt)
mask = functions.dilate_mask(mask, opt)
out = (1 - mask) * reals[-1] + mask * out
functions.save_image('{}/{}_w_mask.jpg'.format(dir2save, _name), out.detach())
else:
print("Warning: mask {} not found.".format(mask_file_name))
print("Harmonization/Editing only performed without mask.")
print("Done. Results saved at: {}".format(dir2save))