forked from google/fhir-data-pipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindicators.py
190 lines (164 loc) · 7.3 KB
/
indicators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The main binary to calculate PEPFAR indicators.
"""
import argparse
from typing import Tuple
from datetime import date, datetime, timedelta
from dateutil import parser as date_parser
import indicator_lib
import query_lib
_CODE_SYSTEM='http://www.ampathkenya.org'
# For information about the following codes see:
# https://github.com/GoogleCloudPlatform/openmrs-fhir-analytics/issues/179#issuecomment-895040775
# and also `synthea` models in this repo.
# Question codes:
_VL_CODE = '856' # HIV VIRAL LOAD
_ARV_PLAN = '1255' # ANTIRETROVIRAL PLAN
_TX_TB_PLAN = '1268' # TUBERCULOSIS TREATMENT PLAN
# TODO: Add TB prevention plans in the synthetic data; seems currently missing.
_TB_PREV_plan = '1268' # TUBERCULOSIS TREATMENT PLAN
_TB_screening = '6174' # REVIEW OF TUBERCULOSIS SCREENING QUESTIONS
# Answer codes:
_YES_CODE = '1065'
_CONTINUE_REGIMEN = '1257' # CONTINUE REGIMEN
_START_DRUGS = '1256' # START DRUGS
_COMPLETE_REGIMEN = '1260' # STOP ALL MEDICATIONS
_STOP_ALL_MED = '1260' # STOP ALL MEDICATIONS
def valid_date(date_str: str) -> datetime:
try:
return date_parser.parse(date_str)
except ValueError:
raise argparse.ArgumentTypeError('Valid dates have YYYY-MM-DD format!')
def create_args(parser: argparse.ArgumentParser):
parser.add_argument(
'--src_dir',
help='Directory that includes Parquet files for each FHIR resource type',
required=True,
type=str
)
parser.add_argument(
'--last_date',
help='The last date for aggregating data.',
default=date.today(),
type=valid_date
)
# TODO: Remove the next arguement once issues #55 is resolved.
parser.add_argument(
'--base_patient_url',
help='This is the base url to be added to patient IDs, e.g., ' +
'http://localhost:8099/openmrs/ws/fhir2/R4/',
default='http://localhost:8099/openmrs/ws/fhir2/R4/',
type=str
)
parser.add_argument(
'--num_days',
help='Number of days on which calculate the indicators.',
default=28,
type=int
)
parser.add_argument(
'--output_csv',
help='The output CSV file',
required=True,
type=str
)
def find_date_range(args: argparse.Namespace) -> Tuple[str, str, str, str, str]:
end_date_str = args.last_date.strftime('%Y-%m-%d')
start_date = args.last_date - timedelta(days=args.num_days)
start_date_str = start_date.strftime('%Y-%m-%d')
previous_period_start = args.last_date - timedelta(days=2 * args.num_days)
previous_period_start_str = previous_period_start.strftime('%Y-%m-%d')
semiannual_start = args.last_date - timedelta(days=6 * args.num_days)
semiannual_start_str = semiannual_start.strftime('%Y-%m-%d')
quarterly_start = args.last_date - timedelta(days=3 * args.num_days)
quarterly_start_str = quarterly_start.strftime('%Y-%m-%d')
return (start_date_str, end_date_str, previous_period_start_str,
semiannual_start_str, quarterly_start_str)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
create_args(parser)
args = parser.parse_args()
(start_date, end_date, prev_start, semiannual_start_str,
quarterly_start_str) = find_date_range(args)
print('Source directory: {0}'.format(args.src_dir))
print('Date range: {0} - {1}'.format(start_date, end_date))
# TODO check why without this constraint, `validate_indicators.sh` fails.
# Monthly query
monthly_query = query_lib.patient_query_factory(
query_lib.Runner.SPARK, args.src_dir, _CODE_SYSTEM).include_obs_values_in_time_range(
_VL_CODE, min_time=start_date, max_time=end_date)
monthly_query.include_all_other_codes(min_time=start_date, max_time=end_date)
# Semiannual query
semi_annual_query = query_lib.patient_query_factory(
query_lib.Runner.SPARK, args.src_dir, _CODE_SYSTEM).include_all_other_codes(
min_time=semiannual_start_str, max_time=end_date)
# Prev Month query
prev_month_query = query_lib.patient_query_factory(
query_lib.Runner.SPARK, args.src_dir, _CODE_SYSTEM).include_all_other_codes(
min_time=prev_start, max_time=end_date)
# Quarterlly query
quarterly_query = query_lib.patient_query_factory(
query_lib.Runner.SPARK, args.src_dir, _CODE_SYSTEM).include_all_other_codes(
min_time=quarterly_start_str, max_time=end_date)
# Fetch aggregated obs
current_month_df = monthly_query.get_patient_obs_view(args.base_patient_url)
prev_month_df = prev_month_query.get_patient_obs_view(args.base_patient_url)
annual_df = semi_annual_query.get_patient_obs_view(args.base_patient_url)
quarterly_df = quarterly_query.get_patient_obs_view(args.base_patient_url)
VL_df = indicator_lib.calc_TX_PVLS(
current_month_df, VL_code=_VL_CODE,
failure_threshold=10000, end_date_str=end_date)
# TX_NEW
TX_NEW_df = indicator_lib.calc_TX_NEW(
current_month_df, ARV_plan=_ARV_PLAN,
start_drug=[_START_DRUGS], end_date_str=end_date)
TB_STAT_df = indicator_lib.calc_TB_STAT(
current_month_df, TB_TX_plan=_TX_TB_PLAN, ARV_plan=_ARV_PLAN,
TB_plan_answer=[_START_DRUGS], end_date_str=end_date)
TX_CURR_df = indicator_lib.calc_TX_CURR(
current_month_df, ARV_plan=_ARV_PLAN,
ARV_plan_answer=[_CONTINUE_REGIMEN, _START_DRUGS],
end_date_str=end_date)
TB_ART_df = indicator_lib.calc_TB_ART(
current_month_df, TB_TX_plan=_TX_TB_PLAN, ARV_plan=_ARV_PLAN,
TB_plan_answer=[_CONTINUE_REGIMEN, _START_DRUGS],
ARV_plan_answer=[_CONTINUE_REGIMEN, _START_DRUGS],
end_date_str=end_date)
TB_PREV_df = indicator_lib.calc_TB_PREV(
prev_month_df, TB_PREV_plan=_TB_PREV_plan, ARV_plan=_ARV_PLAN,
TB_PREV_plan_answer=[_CONTINUE_REGIMEN, _START_DRUGS],
TB_CURR_plan_answer=[_COMPLETE_REGIMEN],
ART_plan_answer=[_CONTINUE_REGIMEN, _START_DRUGS],
end_date_str=end_date)
TX_TB_df = indicator_lib.calc_TX_TB(
annual_df, TX_TB_plan=_TX_TB_PLAN, ARV_plan=_ARV_PLAN,
TB_screening=_TB_screening, YES_CODE=_YES_CODE,
TX_TB_plan_answer=[_CONTINUE_REGIMEN, _START_DRUGS],
ART_plan_answer=[_CONTINUE_REGIMEN, _START_DRUGS],
end_date_str=end_date)
# TODO the logic behind this merge is not clear, especially for null keys.
VL_df.merge(TX_NEW_df, how='outer', left_on=['buckets', 'sup_VL'],
right_on=['buckets', 'TX_NEW']).merge(
TB_STAT_df, how='outer', left_on=['buckets', 'sup_VL'],
right_on=['buckets', 'TB_STAT']).merge(
TX_CURR_df, how='outer', left_on=['buckets', 'sup_VL'],
right_on=['buckets', 'TX_CURR']).merge(
TB_ART_df, how='outer', left_on=['buckets', 'sup_VL'],
right_on=['buckets', 'TB_ART']).merge(
TB_PREV_df, how='outer', left_on=['buckets', 'sup_VL'],
right_on=['buckets', 'TB_PREV']).merge(
TX_TB_df, how='outer', left_on=['buckets', 'sup_VL'],
right_on=['buckets', 'TX_TB']
).to_csv(args.output_csv, index=False)