-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathTestAccuracy.py
140 lines (113 loc) · 5.15 KB
/
TestAccuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from croppingDataset import GAICD
from croppingModel import build_crop_model
import time
import math
import sys
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.utils.data as data
import argparse
from scipy.stats import spearmanr, pearsonr
parser = argparse.ArgumentParser(
description='Single Shot MultiBox Detector Training With Pytorch')
parser.add_argument('--dataset_root', default='dataset/GAIC/', help='Dataset root directory path')
parser.add_argument('--image_size', default=256, type=int, help='Batch size for training')
parser.add_argument('--batch_size', default=1, type=int, help='Batch size for training')
parser.add_argument('--num_workers', default=0, type=int, help='Number of workers used in dataloading')
parser.add_argument('--cuda', default=True, help='Use CUDA to train model')
parser.add_argument('--net_path', default='weights/ablation/cropping/mobilenetv2/downsample4_multi_Aug1_Align9_Cdim8/23_0.625_0.583_0.553_0.525_0.785_0.762_0.748_0.723_0.783_0.806.pth_____',
help='Directory for saving checkpoint models')
args = parser.parse_args()
if torch.cuda.is_available():
if args.cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
if not args.cuda:
print("WARNING: It looks like you have a CUDA device, but aren't " +
"using CUDA.\nRun with --cuda for optimal training speed.")
torch.set_default_tensor_type('torch.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
data_loader = data.DataLoader(GAICD(image_size=args.image_size, dataset_dir=args.dataset_root, set='test'), args.batch_size, num_workers=args.num_workers, shuffle=False)
def test():
net = build_crop_model(scale='multi', alignsize=9, reddim=8, loadweight=True, model='mobilenetv2', downsample=4)
net.load_state_dict(torch.load(args.net_path))
if args.cuda:
net = torch.nn.DataParallel(net,device_ids=[0])
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
net = net.cuda()
net.eval()
acc4_5 = []
acc4_10 = []
wacc4_5 = []
wacc4_10 = []
srcc = []
pcc = []
for n in range(4):
acc4_5.append(0)
acc4_10.append(0)
wacc4_5.append(0)
wacc4_10.append(0)
for id, sample in enumerate(data_loader):
image = sample['image']
bboxs = sample['bbox']
MOS = sample['MOS']
roi = []
for idx in range(0,len(bboxs['xmin'])):
roi.append((0, bboxs['xmin'][idx],bboxs['ymin'][idx],bboxs['xmax'][idx],bboxs['ymax'][idx]))
if args.cuda:
image = Variable(image.cuda())
roi = Variable(torch.Tensor(roi))
else:
image = Variable(image)
roi = Variable(torch.Tensor(roi))
t0 = time.time()
out = net(image,roi)
t1 = time.time()
print('timer: %.4f sec.' % (t1 - t0))
id_MOS = sorted(range(len(MOS)), key=lambda k: MOS[k], reverse=True)
id_out = sorted(range(len(out)), key=lambda k: out[k], reverse=True)
rank_of_returned_crop = []
for k in range(4):
rank_of_returned_crop.append(id_MOS.index(id_out[k]))
for k in range(4):
temp_acc_4_5 = 0.0
temp_acc_4_10 = 0.0
for j in range(k+1):
if MOS[id_out[j]] >= MOS[id_MOS[4]]:
temp_acc_4_5 += 1.0
if MOS[id_out[j]] >= MOS[id_MOS[9]]:
temp_acc_4_10 += 1.0
acc4_5[k] += temp_acc_4_5 / (k+1.0)
acc4_10[k] += temp_acc_4_10 / (k+1.0)
for k in range(4):
temp_wacc_4_5 = 0.0
temp_wacc_4_10 = 0.0
temp_rank_of_returned_crop = rank_of_returned_crop[:(k+1)]
temp_rank_of_returned_crop.sort()
for j in range(k+1):
if temp_rank_of_returned_crop[j] <= 4:
temp_wacc_4_5 += 1.0 * math.exp(-0.2*(temp_rank_of_returned_crop[j]-j))
if temp_rank_of_returned_crop[j] <= 9:
temp_wacc_4_10 += 1.0 * math.exp(-0.1*(temp_rank_of_returned_crop[j]-j))
wacc4_5[k] += temp_wacc_4_5 / (k+1.0)
wacc4_10[k] += temp_wacc_4_10 / (k+1.0)
MOS_arr = []
out = torch.squeeze(out).cpu().detach().numpy()
for k in range(len(MOS)):
MOS_arr.append(MOS[k].numpy()[0])
srcc.append(spearmanr(MOS_arr,out)[0])
pcc.append(pearsonr(MOS_arr,out)[0])
for k in range(4):
acc4_5[k] = acc4_5[k] / 200.0
acc4_10[k] = acc4_10[k] / 200.0
wacc4_5[k] = wacc4_5[k] / 200.0
wacc4_10[k] = wacc4_10[k] / 200.0
avg_srcc = sum(srcc) / 200.0
avg_pcc = sum(pcc) / 200.0
sys.stdout.write('[%.3f, %.3f, %.3f, %.3f] [%.3f, %.3f, %.3f, %.3f]\n' % (acc4_5[0],acc4_5[1],acc4_5[2],acc4_5[3],acc4_10[0],acc4_10[1],acc4_10[2],acc4_10[3]))
sys.stdout.write('[%.3f, %.3f, %.3f, %.3f] [%.3f, %.3f, %.3f, %.3f]\n' % (wacc4_5[0],wacc4_5[1],wacc4_5[2],wacc4_5[3],wacc4_10[0],wacc4_10[1],wacc4_10[2],wacc4_10[3]))
sys.stdout.write('[Avg SRCC: %.3f] [Avg PCC: %.3f]\n' % (avg_srcc,avg_pcc))
if __name__ == '__main__':
test()