forked from mikebrady/shairport-sync
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtp.c
843 lines (708 loc) · 31 KB
/
rtp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
/*
* Apple RTP protocol handler. This file is part of Shairport.
* Copyright (c) James Laird 2013
* All rights reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <time.h>
#include <pthread.h>
#include <signal.h>
#include <unistd.h>
#include <memory.h>
#include <math.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <stdio.h>
#include <errno.h>
#include "common.h"
#include "player.h"
#include "rtp.h"
/*
// this does not compile properly with OpenWrt Barrier Breaker...
#if defined(__linux__)
#include <linux/in6.h>
#endif
*/
typedef struct time_ping_record {
uint64_t local_to_remote_difference;
uint64_t dispersion;
uint64_t local_time;
uint64_t remote_time;
} time_ping_record;
// only one RTP session can be active at a time.
static int running = 0;
static char client_ip_string[INET6_ADDRSTRLEN]; // the ip string pointing to the client
static char self_ip_string[INET6_ADDRSTRLEN]; // the ip string being used by this program -- it could be one of many, so we need to know it
static uint32_t self_scope_id; // if it's an ipv6 connection, this will be its scope
static short connection_ip_family; // AF_INET / AF_INET6
static uint32_t client_active_remote; // used when you want to control the client...
static SOCKADDR rtp_client_control_socket; // a socket pointing to the control port of the client
static SOCKADDR rtp_client_timing_socket; // a socket pointing to the timing port of the client
static int audio_socket; // our local [server] audio socket
static int control_socket; // our local [server] control socket
static int timing_socket; // local timing socket
//static pthread_t rtp_audio_thread, rtp_control_thread, rtp_timing_thread;
static uint32_t reference_timestamp;
static uint64_t reference_timestamp_time;
static uint64_t remote_reference_timestamp_time;
// debug variables
static int request_sent;
#define time_ping_history 8
#define time_ping_fudge_factor 100000
static uint8_t time_ping_count;
struct time_ping_record time_pings[time_ping_history];
// static struct timespec dtt; // dangerous -- this assumes that there will never be two timing
// request in flight at the same time
static uint64_t departure_time; // dangerous -- this assumes that there will never be two timing
// request in flight at the same time
static pthread_mutex_t reference_time_mutex = PTHREAD_MUTEX_INITIALIZER;
uint64_t static local_to_remote_time_difference; // used to switch between local and remote clocks
void *rtp_audio_receiver(void *arg) {
debug(2, "Audio receiver -- Server RTP thread starting.");
// we inherit the signal mask (SIGUSR1)
struct inter_threads_record *itr = arg;
int32_t last_seqno = -1;
uint8_t packet[2048], *pktp;
uint64_t time_of_previous_packet_fp = 0;
float longest_packet_time_interval_us = 0.0;
// mean and variance calculations from "online_variance" algorithm at https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
int32_t stat_n = 0;
float stat_mean = 0.0;
float stat_M2 = 0.0;
ssize_t nread;
while (itr->please_stop==0) {
nread = recv(audio_socket, packet, sizeof(packet), 0);
uint64_t local_time_now_fp = get_absolute_time_in_fp();
if (time_of_previous_packet_fp) {
float time_interval_us = (((local_time_now_fp - time_of_previous_packet_fp)*1000000)>>32)*1.0;
time_of_previous_packet_fp = local_time_now_fp;
if (time_interval_us>longest_packet_time_interval_us)
longest_packet_time_interval_us=time_interval_us;
stat_n+=1;
float stat_delta = time_interval_us - stat_mean;
stat_mean += stat_delta/stat_n;
stat_M2 += stat_delta*(time_interval_us - stat_mean);
if (stat_n % 2500 == 0) {
debug(2,"Packet reception interval stats: mean, standard deviation and max for the last 2,500 packets in microseconds: %10.1f, %10.1f, %10.1f.",stat_mean, sqrtf(stat_M2 / (stat_n-1)),longest_packet_time_interval_us);
stat_n = 0;
stat_mean = 0.0;
stat_M2 = 0.0;
time_of_previous_packet_fp = 0;
longest_packet_time_interval_us = 0.0;
}
} else {
time_of_previous_packet_fp = local_time_now_fp;
}
if (nread < 0)
break;
ssize_t plen = nread;
uint8_t type = packet[1] & ~0x80;
if (type == 0x60 || type == 0x56) { // audio data / resend
pktp = packet;
if (type == 0x56) {
pktp += 4;
plen -= 4;
}
seq_t seqno = ntohs(*(unsigned short *)(pktp + 2));
// increment last_seqno and see if it's the same as the incoming seqno
if (last_seqno == -1)
last_seqno = seqno;
else {
last_seqno = (last_seqno + 1) & 0xffff;
//if (seqno != last_seqno)
// debug(3, "RTP: Packets out of sequence: expected: %d, got %d.", last_seqno, seqno);
last_seqno = seqno; // reset warning...
}
uint32_t timestamp = ntohl(*(unsigned long *)(pktp + 4));
// if (packet[1]&0x10)
// debug(1,"Audio packet Extension bit set.");
pktp += 12;
plen -= 12;
// check if packet contains enough content to be reasonable
if (plen >= 16) {
player_put_packet(seqno, timestamp, pktp, plen);
continue;
}
if (type == 0x56 && seqno == 0) {
debug(2, "resend-related request packet received, ignoring.");
continue;
}
debug(1, "Audio receiver -- Unknown RTP packet of type 0x%02X length %d seqno %d", type,
nread, seqno);
}
warn("Audio receiver -- Unknown RTP packet of type 0x%02X length %d.", type, nread);
}
debug(1, "Audio receiver -- Server RTP thread interrupted. terminating.");
close(audio_socket);
return NULL;
}
void *rtp_control_receiver(void *arg) {
// we inherit the signal mask (SIGUSR1)
debug(2, "Control receiver -- Server RTP thread starting.");
struct inter_threads_record *itr = arg;
reference_timestamp = 0; // nothing valid received yet
uint8_t packet[2048], *pktp;
struct timespec tn;
uint64_t remote_time_of_sync, local_time_now, remote_time_now;
uint32_t sync_rtp_timestamp, rtp_timestamp_less_latency;
ssize_t nread;
while (itr->please_stop==0) {
nread = recv(control_socket, packet, sizeof(packet), 0);
local_time_now = get_absolute_time_in_fp();
// clock_gettime(CLOCK_MONOTONIC,&tn);
// local_time_now=((uint64_t)tn.tv_sec<<32)+((uint64_t)tn.tv_nsec<<32)/1000000000;
if (nread < 0)
break;
ssize_t plen = nread;
if (packet[1] == 0xd4) { // sync data
/*
char obf[4096];
char *obfp = obf;
int obfc;
for (obfc=0;obfc<plen;obfc++) {
sprintf(obfp,"%02X",packet[obfc]);
obfp+=2;
};
*obfp=0;
debug(1,"Sync Packet Received: \"%s\"",obf);
*/
if (local_to_remote_time_difference) { // need a time packet to be interchanged first...
remote_time_of_sync = (uint64_t)ntohl(*((uint32_t *)&packet[8])) << 32;
remote_time_of_sync += ntohl(*((uint32_t *)&packet[12]));
// debug(1,"Remote Sync Time: %0llx.",remote_time_of_sync);
rtp_timestamp_less_latency = ntohl(*((uint32_t *)&packet[4]));
sync_rtp_timestamp = ntohl(*((uint32_t *)&packet[16]));
if (config.use_negotiated_latencies) {
uint32_t la = sync_rtp_timestamp-rtp_timestamp_less_latency+11025;
if (la!=config.latency) {
config.latency = la;
// debug(1,"Using negotiated latency of %u frames.",config.latency);
}
}
if (packet[0] & 0x10) {
// if it's a packet right after a flush or resume
sync_rtp_timestamp += 352; // add frame_size -- can't see a reference to this anywhere,
// but it seems to get everything into sync.
// it's as if the first sync after a flush or resume is the timing of the next packet
// after the one whose RTP is given. Weird.
}
pthread_mutex_lock(&reference_time_mutex);
remote_reference_timestamp_time = remote_time_of_sync;
reference_timestamp_time = remote_time_of_sync - local_to_remote_time_difference;
reference_timestamp = sync_rtp_timestamp;
pthread_mutex_unlock(&reference_time_mutex);
// debug(1,"New Reference timestamp and timestamp time...");
// get estimated remote time now
// remote_time_now = local_time_now + local_to_remote_time_difference;
// debug(1,"Sync Time is %lld us late (remote
// times).",((remote_time_now-remote_time_of_sync)*1000000)>>32);
// debug(1,"Sync Time is %lld us late (local
// times).",((local_time_now-reference_timestamp_time)*1000000)>>32);
} else {
debug(1, "Sync packet received before we got a timing packet back.");
}
} else if (packet[1] == 0xd6) { // resent audio data in the control path -- whaale only?
// debug(1, "Control Port -- Retransmitted Audio Data Packet received.");
pktp = packet+4;
plen -= 4;
seq_t seqno = ntohs(*(unsigned short *)(pktp + 2));
uint32_t timestamp = ntohl(*(unsigned long *)(pktp + 4));
pktp += 12;
plen -= 12;
// check if packet contains enough content to be reasonable
if (plen >= 16) {
player_put_packet(seqno, timestamp, pktp, plen);
continue;
} else {
debug(1, "Too-short retransmitted audio packet received in control port, ignored.");
}
} else
debug(1, "Control Port -- Unknown RTP packet of type 0x%02X length %d.", packet[1], nread);
}
debug(1, "Control RTP thread interrupted. terminating.");
close(control_socket);
return NULL;
}
void *rtp_timing_sender(void *arg) {
debug(2, "Timing sender thread starting.");
int *stop = arg; // the parameter points to this request to stop thing
struct timing_request {
char leader;
char type;
uint16_t seqno;
uint32_t filler;
uint64_t origin, receive, transmit;
};
uint64_t request_number = 0;
struct timing_request req; // *not* a standard RTCP NACK
req.leader = 0x80;
req.type = 0xd2; // Timing request
req.filler = 0;
req.seqno = htons(7);
time_ping_count = 0;
// we inherit the signal mask (SIGUSR1)
while (*stop==0) {
// debug(1,"Send a timing request");
if (!running)
die("rtp_timing_sender called without active stream!");
// debug(1, "Requesting ntp timestamp exchange.");
req.filler = 0;
req.origin = req.receive = req.transmit = 0;
// clock_gettime(CLOCK_MONOTONIC,&dtt);
departure_time = get_absolute_time_in_fp();
socklen_t msgsize = sizeof(struct sockaddr_in);
#ifdef AF_INET6
if (rtp_client_timing_socket.SAFAMILY == AF_INET6) {
msgsize = sizeof(struct sockaddr_in6);
}
#endif
if (sendto(timing_socket, &req, sizeof(req), 0, (struct sockaddr *)&rtp_client_timing_socket,
msgsize) == -1) {
perror("Error sendto-ing to timing socket");
}
request_number++;
if (request_number <= 4)
usleep(500000);
else
sleep(3);
}
debug(1, "rtp_timing_sender thread interrupted. terminating.");
return NULL;
}
void *rtp_timing_receiver(void *arg) {
debug(2, "Timing receiver -- Server RTP thread starting.");
// we inherit the signal mask (SIGUSR1)
struct inter_threads_record *itr = arg;
uint8_t packet[2048], *pktp;
ssize_t nread;
int request_stop = 0;
pthread_t timer_requester;
pthread_create(&timer_requester, NULL, &rtp_timing_sender, (void *)&request_stop);
// struct timespec att;
uint64_t distant_receive_time, distant_transmit_time, arrival_time, return_time, transit_time,
processing_time;
local_to_remote_time_jitters = 0;
local_to_remote_time_jitters_count = 0;
uint64_t first_remote_time = 0;
uint64_t first_local_time = 0;
uint64_t first_local_to_remote_time_difference = 0;
uint64_t first_local_to_remote_time_difference_time;
uint64_t l2rtd = 0;
while (itr->please_stop==0) {
nread = recv(timing_socket, packet, sizeof(packet), 0);
arrival_time = get_absolute_time_in_fp();
// clock_gettime(CLOCK_MONOTONIC,&att);
if (nread < 0)
break;
ssize_t plen = nread;
// debug(1,"Packet Received on Timing Port.");
if (packet[1] == 0xd3) { // timing reply
/*
char obf[4096];
char *obfp = obf;
int obfc;
for (obfc=0;obfc<plen;obfc++) {
sprintf(obfp,"%02X",packet[obfc]);
obfp+=2;
};
*obfp=0;
//debug(1,"Timing Packet Received: \"%s\"",obf);
*/
// arrival_time = ((uint64_t)att.tv_sec<<32)+((uint64_t)att.tv_nsec<<32)/1000000000;
// departure_time = ((uint64_t)dtt.tv_sec<<32)+((uint64_t)dtt.tv_nsec<<32)/1000000000;
return_time = arrival_time - departure_time;
// uint64_t rtus = (return_time*1000000)>>32; debug(1,"Time ping turnaround time: %lld
// us.",rtus);
// distant_receive_time =
// ((uint64_t)ntohl(*((uint32_t*)&packet[16])))<<32+ntohl(*((uint32_t*)&packet[20]));
distant_receive_time = (uint64_t)ntohl(*((uint32_t *)&packet[16])) << 32;
distant_receive_time += ntohl(*((uint32_t *)&packet[20]));
// distant_transmit_time =
// ((uint64_t)ntohl(*((uint32_t*)&packet[24])))<<32+ntohl(*((uint32_t*)&packet[28]));
distant_transmit_time = (uint64_t)ntohl(*((uint32_t *)&packet[24])) << 32;
distant_transmit_time += ntohl(*((uint32_t *)&packet[28]));
processing_time = distant_transmit_time - distant_receive_time;
// debug(1,"Return trip time: %lluuS, remote processing time:
// %lluuS.",(return_time*1000000)>>32,(processing_time*1000000)>>32);
uint64_t local_time_by_remote_clock = distant_transmit_time + return_time / 2;
unsigned int cc;
for (cc = time_ping_history - 1; cc > 0; cc--) {
time_pings[cc] = time_pings[cc - 1];
time_pings[cc].dispersion = (time_pings[cc].dispersion * 133) /
100; // make the dispersions 'age' by this rational factor
}
// these are for diagnostics only -- not used
time_pings[0].local_time = arrival_time;
time_pings[0].remote_time = distant_transmit_time;
time_pings[0].local_to_remote_difference = local_time_by_remote_clock - arrival_time;
time_pings[0].dispersion = return_time;
if (time_ping_count < time_ping_history)
time_ping_count++;
uint64_t local_time_chosen = arrival_time;;
uint64_t remote_time_chosen = distant_transmit_time;
// now pick the timestamp with the lowest dispersion
uint64_t l2rtd = time_pings[0].local_to_remote_difference;
uint64_t tld = time_pings[0].dispersion;
for (cc = 1; cc < time_ping_count; cc++)
if (time_pings[cc].dispersion < tld) {
l2rtd = time_pings[cc].local_to_remote_difference;
tld = time_pings[cc].dispersion;
local_time_chosen = time_pings[cc].local_time;
remote_time_chosen = time_pings[cc].remote_time;
}
int64_t ji;
if (time_ping_count > 1) {
if (l2rtd > local_to_remote_time_difference) {
local_to_remote_time_jitters =
local_to_remote_time_jitters + l2rtd - local_to_remote_time_difference;
ji = l2rtd - local_to_remote_time_difference;
} else {
local_to_remote_time_jitters =
local_to_remote_time_jitters + local_to_remote_time_difference - l2rtd;
ji = -(local_to_remote_time_difference - l2rtd);
}
local_to_remote_time_jitters_count += 1;
}
// uncomment below to print jitter between client's clock and oour clock
// int64_t rtus = (tld*1000000)>>32; ji = (ji*1000000)>>32; debug(1,"Choosing time difference
// with dispersion of %lld us with delta of %lld us",rtus,ji);
local_to_remote_time_difference = l2rtd;
if (first_local_to_remote_time_difference==0) {
first_local_to_remote_time_difference = local_to_remote_time_difference;
first_local_to_remote_time_difference_time = get_absolute_time_in_fp();
}
int64_t clock_drift, clock_drift_in_usec;
if (first_local_time==0) {
first_local_time = local_time_chosen;
first_remote_time = remote_time_chosen;
uint64_t clock_drift = 0;
} else {
uint64_t local_time_change = local_time_chosen - first_local_time;
uint64_t remote_time_change = remote_time_chosen - first_remote_time;
if (remote_time_change >= local_time_change)
clock_drift = remote_time_change - local_time_change;
else
clock_drift = -(local_time_change - remote_time_change);
}
if (clock_drift>=0)
clock_drift_in_usec = (clock_drift * 1000000)>>32;
else
clock_drift_in_usec = -(((-clock_drift) * 1000000)>>32);
int64_t source_drift_usec;
if (play_segment_reference_frame!=0) {
uint32_t reference_timestamp;
uint64_t reference_timestamp_time,remote_reference_timestamp_time;
get_reference_timestamp_stuff(&reference_timestamp, &reference_timestamp_time, &remote_reference_timestamp_time);
uint64_t frame_difference = 0;
if (reference_timestamp>=play_segment_reference_frame)
frame_difference = (uint64_t)reference_timestamp-(uint64_t)play_segment_reference_frame;
else // rollover
frame_difference = (uint64_t)reference_timestamp+0x100000000-(uint64_t)play_segment_reference_frame;
uint64_t frame_time_difference_calculated = (((uint64_t)frame_difference<<32)/44100);
uint64_t frame_time_difference_actual = remote_reference_timestamp_time-play_segment_reference_frame_remote_time; // this is all done by reference to the sources' system clock
// debug(1,"%llu frames since play started, %llu usec calculated, %llu usec actual",frame_difference, (frame_time_difference_calculated*1000000)>>32, (frame_time_difference_actual*1000000)>>32);
if (frame_time_difference_calculated>=frame_time_difference_actual) // i.e. if the time it should have taken to send the packets is greater than the actual time difference measured on the source clock
// then the source DAC's clock is running fast relative to the source system clock
source_drift_usec = frame_time_difference_calculated-frame_time_difference_actual;
else
// otherwise the source DAC's clock is running slow relative to the source system clock
source_drift_usec = -(frame_time_difference_actual-frame_time_difference_calculated);
} else
source_drift_usec = 0;
source_drift_usec = (source_drift_usec*1000000)>>32; // turn it to microseconds
//long current_delay = 0;
//if (config.output->delay) {
// config.output->delay(¤t_delay);
//}
// Useful for troubleshooting:
// clock_drift between source and local clock -- +ve means source is faster
// session_corrections -- the amount of correction done, in microseconds. +ve means frames added
// current_delay = delay in DAC buffer in frames
// source_drift_usec = how much faster (+ve) or slower the source DAC is running relative to the source clock
// buffer_occupancy = the number of buffers occupied. Crude, but should show no long term trend if source and device are in sync.
// return_time = the time from soliciting a timing packet to getting it back. It should be short ( < 5 ms) and pretty consistent.
// debug(1, "%lld\t%lld\t%ld\t%lld\t%u\t%llu", clock_drift_in_usec,(session_corrections*1000000)/44100,current_delay,source_drift_usec,buffer_occupancy,(return_time*1000000)>>32);
} else {
debug(1, "Timing port -- Unknown RTP packet of type 0x%02X length %d.", packet[1], nread);
}
}
debug(1, "Timing thread interrupted. terminating.");
request_stop = 1;
void *retval;
pthread_kill(timer_requester, SIGUSR1);
pthread_join(timer_requester, &retval);
debug(1, "Closed and terminated timer requester thread.");
debug(1, "Timing RTP thread terminated.");
close(timing_socket);
return NULL;
}
static int bind_port(int ip_family,const char *self_ip_address,uint32_t scope_id,int *sock) {
// look for a port in the range, if any was specified.
int desired_port = config.udp_port_base;
int ret;
int local_socket = socket(ip_family, SOCK_DGRAM, IPPROTO_UDP);
if (local_socket== -1)
die("Could not allocate a socket.");
SOCKADDR myaddr;
do {
memset(&myaddr,0,sizeof(myaddr));
if (ip_family==AF_INET) {
struct sockaddr_in *sa = (struct sockaddr_in *)&myaddr;
sa->sin_family = AF_INET;
sa->sin_port = ntohs(desired_port);
inet_pton(AF_INET,self_ip_address,&(sa->sin_addr));
ret = bind(local_socket,(struct sockaddr*)sa, sizeof(struct sockaddr_in));
}
#ifdef AF_INET6
if (ip_family==AF_INET6) {
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)&myaddr;
sa6->sin6_family = AF_INET6;
sa6->sin6_port = ntohs(desired_port);
inet_pton(AF_INET6,self_ip_address,&(sa6->sin6_addr));
sa6->sin6_scope_id=scope_id;
ret = bind(local_socket,(struct sockaddr*)sa6, sizeof(struct sockaddr_in6));
}
#endif
} while ((ret<0) && (errno==EADDRINUSE) && (desired_port!=0) && (desired_port++ < config.udp_port_base+config.udp_port_range));
// debug(1,"UDP port chosen: %d.",desired_port);
if (ret < 0) {
close(local_socket);
die("error: could not bind a UDP port!");
}
int sport;
SOCKADDR local;
socklen_t local_len = sizeof(local);
getsockname(local_socket, (struct sockaddr *)&local, &local_len);
#ifdef AF_INET6
if (local.SAFAMILY == AF_INET6) {
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)&local;
sport = ntohs(sa6->sin6_port);
} else
#endif
{
struct sockaddr_in *sa = (struct sockaddr_in *)&local;
sport = ntohs(sa->sin_port);
}
*sock = local_socket;
return sport;
}
void rtp_setup(SOCKADDR *local, SOCKADDR *remote, int cport, int tport, uint32_t active_remote, int *lsport,
int *lcport, int *ltport) {
// this gets the local and remote ip numbers (and ports used for the TCD stuff)
// we use the local stuff to specify the address we are coming from and
// we use the remote stuff to specify where we're goint to
if (running)
die("rtp_setup called with active stream!");
debug(2, "rtp_setup: cport=%d tport=%d.", cport, tport);
client_active_remote = active_remote;
// print out what we know about the client
void *client_addr,*self_addr;
int client_port,self_port;
char client_port_str[64];
char self_addr_str[64];
connection_ip_family = remote->SAFAMILY; // keep information about the kind of ip of the client
#ifdef AF_INET6
if (connection_ip_family == AF_INET6) {
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)remote;
client_addr = &(sa6->sin6_addr);
client_port = ntohs(sa6->sin6_port);
sa6 = (struct sockaddr_in6 *)local;
self_addr = &(sa6->sin6_addr);
self_port = ntohs(sa6->sin6_port);
self_scope_id = sa6->sin6_scope_id;
}
#endif
if (connection_ip_family == AF_INET) {
struct sockaddr_in *sa4 = (struct sockaddr_in *)remote;
client_addr = &(sa4->sin_addr);
client_port = ntohs(sa4->sin_port);
sa4 = (struct sockaddr_in *)local;
self_addr = &(sa4->sin_addr);
self_port = ntohs(sa4->sin_port);
}
inet_ntop(connection_ip_family, client_addr, client_ip_string,
sizeof(client_ip_string));
inet_ntop(connection_ip_family, self_addr, self_ip_string,
sizeof(self_ip_string));
debug(1, "Set up play connection from %s to self at %s.", client_ip_string,self_ip_string);
// set up a the record of the remote's control socket
struct addrinfo hints;
struct addrinfo *servinfo;
memset(&rtp_client_control_socket, 0, sizeof(rtp_client_control_socket));
memset(&hints, 0, sizeof hints);
hints.ai_family = connection_ip_family;
hints.ai_socktype = SOCK_DGRAM;
char portstr[20];
snprintf(portstr, 20, "%d", cport);
if (getaddrinfo(client_ip_string, portstr, &hints, &servinfo) != 0)
die("Can't get address of client's control port");
#ifdef AF_INET6
if (servinfo->ai_family == AF_INET6) {
memcpy(&rtp_client_control_socket, servinfo->ai_addr, sizeof(struct sockaddr_in6));
// ensure the scope id matches that of remote. this is needed for link-local addresses.
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)&rtp_client_control_socket;
sa6->sin6_scope_id = self_scope_id;
} else
#endif
memcpy(&rtp_client_control_socket, servinfo->ai_addr, sizeof(struct sockaddr_in));
freeaddrinfo(servinfo);
// set up a the record of the remote's timing socket
memset(&rtp_client_timing_socket, 0, sizeof(rtp_client_timing_socket));
memset(&hints, 0, sizeof hints);
hints.ai_family = connection_ip_family;
hints.ai_socktype = SOCK_DGRAM;
snprintf(portstr, 20, "%d", tport);
if (getaddrinfo(client_ip_string, portstr, &hints, &servinfo) != 0)
die("Can't get address of client's timing port");
#ifdef AF_INET6
if (servinfo->ai_family == AF_INET6) {
memcpy(&rtp_client_timing_socket, servinfo->ai_addr, sizeof(struct sockaddr_in6));
// ensure the scope id matches that of remote. this is needed for link-local addresses.
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)&rtp_client_timing_socket;
sa6->sin6_scope_id = self_scope_id;
} else
#endif
memcpy(&rtp_client_timing_socket, servinfo->ai_addr, sizeof(struct sockaddr_in));
freeaddrinfo(servinfo);
// now, we open three sockets -- one for the audio stream, one for the timing and one for the
// control
*lsport = bind_port(connection_ip_family,self_ip_string,self_scope_id,&audio_socket);
*lcport = bind_port(connection_ip_family,self_ip_string,self_scope_id,&control_socket);
*ltport = bind_port(connection_ip_family,self_ip_string,self_scope_id,&timing_socket);
debug(2, "listening for audio, control and timing on ports %d, %d, %d.", *lsport, *lcport,
*ltport);
reference_timestamp = 0;
//pthread_create(&rtp_audio_thread, NULL, &rtp_audio_receiver, NULL);
//pthread_create(&rtp_control_thread, NULL, &rtp_control_receiver, NULL);
//pthread_create(&rtp_timing_thread, NULL, &rtp_timing_receiver, NULL);
running = 1;
request_sent = 0;
}
void get_reference_timestamp_stuff(uint32_t *timestamp, uint64_t *timestamp_time, uint64_t *remote_timestamp_time) {
// types okay
pthread_mutex_lock(&reference_time_mutex);
*timestamp = reference_timestamp;
*timestamp_time = reference_timestamp_time;
*remote_timestamp_time = remote_reference_timestamp_time;
pthread_mutex_unlock(&reference_time_mutex);
}
void clear_reference_timestamp(void) {
pthread_mutex_lock(&reference_time_mutex);
reference_timestamp = 0;
reference_timestamp_time = 0;
pthread_mutex_unlock(&reference_time_mutex);
}
void rtp_shutdown(void) {
if (!running)
debug(1,"rtp_shutdown called without active stream!");
debug(2, "shutting down RTP thread");
clear_reference_timestamp();
// debug(1,"Shut down audio, control and timing threads");
// usleep(3000000); // hack
// pthread_kill(rtp_audio_thread, SIGUSR1);
// pthread_kill(rtp_control_thread, SIGUSR1);
// pthread_kill(rtp_timing_thread, SIGUSR1);
// pthread_join(rtp_audio_thread, &retval);
// pthread_join(rtp_control_thread, &retval);
// pthread_join(rtp_timing_thread, &retval);
running = 0;
}
void rtp_request_resend(seq_t first, uint32_t count) {
if (running) {
//if (!request_sent) {
debug(3, "requesting resend of %d packets starting at %u.", count, first);
// request_sent = 1;
//}
char req[8]; // *not* a standard RTCP NACK
req[0] = 0x80;
req[1] = 0x55 | 0x80; // Apple 'resend'
*(unsigned short *)(req + 2) = htons(1); // our seqnum
*(unsigned short *)(req + 4) = htons(first); // missed seqnum
*(unsigned short *)(req + 6) = htons(count); // count
socklen_t msgsize = sizeof(struct sockaddr_in);
#ifdef AF_INET6
if (rtp_client_control_socket.SAFAMILY == AF_INET6) {
msgsize = sizeof(struct sockaddr_in6);
}
#endif
if (sendto(audio_socket, req, sizeof(req), 0, (struct sockaddr *)&rtp_client_control_socket,
msgsize) == -1) {
perror("Error sendto-ing to audio socket");
}
} else {
//if (!request_sent) {
debug(2, "rtp_request_resend called without active stream!");
// request_sent = 1;
//}
}
}
void rtp_request_client_pause() {
if (running) {
if (client_active_remote == 0) {
debug(1, "Can't request a client pause: no valid active remote.");
} else {
// debug(1,"Send a client pause request to %s:3689 with active remote
// %u.",client_ip_string,client_active_remote);
struct addrinfo hints, *res;
int sockfd;
char message[1000], server_reply[2000];
// first, load up address structs with getaddrinfo():
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
getaddrinfo(client_ip_string, "3689", &hints, &res);
// make a socket:
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (sockfd == -1) {
die("Could not create socket");
}
// debug(1,"Socket created");
// connect!
if (connect(sockfd, res->ai_addr, res->ai_addrlen) < 0) {
die("connect failed. Error");
}
// debug(1,"Connect successful");
sprintf(message,
"GET /ctrl-int/1/pause HTTP/1.1\r\nHost: %s:3689\r\nActive-Remote: %u\r\n\r\n",
client_ip_string, client_active_remote);
// debug(1,"Sending this message: \"%s\".",message);
// Send some data
if (send(sockfd, message, strlen(message), 0) < 0) {
debug(1, "Send failed");
}
// Receive a reply from the server
if (recv(sockfd, server_reply, 2000, 0) < 0) {
debug(1, "recv failed");
}
// debug(1,"Server replied: \"%s\".",server_reply);
if (strstr(server_reply, "HTTP/1.1 204 No Content") != server_reply)
debug(1, "Client pause request failed.");
// debug(1,"Client pause request failed: \"%s\".",server_reply);
close(sockfd);
}
} else {
debug(1, "Request to pause non-existent play stream -- ignored.");
}
}