forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprep_model.py
288 lines (249 loc) · 8.86 KB
/
prep_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
"""
Script for preparing the model for publication.
"""
import os
import argparse
import subprocess
import shutil
import re
import hashlib
import zipfile
import pandas as pd
def parse_args():
"""
Parse python script parameters.
Returns:
-------
ArgumentParser
Resulted args.
"""
parser = argparse.ArgumentParser(description="Prepare model",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--model",
type=str,
required=True,
help="model name")
parser.add_argument(
"--resume",
type=str,
default="",
help="model weights (Gluon) file path")
parser.add_argument(
"--input-size",
type=int,
default=224,
help="size of the input for model")
args = parser.parse_args()
return args
def calc_sha1(file_name):
"""
Calculate sha1 hash of the file content.
Parameters:
----------
file_name : str
Path to the file.
sha1_hash : str
Expected sha1 hash in hexadecimal digits.
Returns:
-------
str
sha1 hex digest.
"""
sha1 = hashlib.sha1()
with open(file_name, "rb") as f:
while True:
data = f.read(1048576)
if not data:
break
sha1.update(data)
return sha1.hexdigest()
def post_process(dst_dir_path,
model_name,
model_file_path,
log_file_path,
dst_model_file_ext,
log_line_num):
"""
Post-process weight/log files.
Parameters:
----------
dst_dir_path : str
Destination dir path.
model_name : str
Model name.
model_file_path : str
Model file path.
log_file_path : str
Log file path.
dst_model_file_ext : str
Destination model file extension.
log_line_num : int
Log file last line number for analysis.
Returns:
-------
top5_err : str
top5 error value.
sha1_value : str
sha1 hex digest.
"""
with open(log_file_path, "r") as f:
log_file_tail = f.read().splitlines()[log_line_num]
err5_str = re.findall(r", err-top5=\d+\.\d+", log_file_tail)
if len(err5_str) != 0:
top5_err = re.findall(r"\d+\.\d+", err5_str[0])[0].split(".")[1]
else:
with open(log_file_path, "r") as f:
log_file_tail = f.read().splitlines()[log_line_num - 1]
err5_str = re.findall(r", err-top5=\d+\.\d+", log_file_tail)
top5_err = re.findall(r"\d+\.\d+", err5_str[0])[0].split(".")[1]
sha1_value = calc_sha1(model_file_path)
dst_model_file_name = "{}-{}-{}.{}".format(model_name, top5_err, sha1_value[:8], dst_model_file_ext)
dst_model_file_path = os.path.join(dst_dir_path, dst_model_file_name)
os.rename(model_file_path, dst_model_file_path)
os.rename(log_file_path, dst_model_file_path + ".log")
with zipfile.ZipFile(dst_model_file_path + ".zip", "w", zipfile.ZIP_DEFLATED) as zf:
zf.write(filename=dst_model_file_path, arcname=dst_model_file_name)
os.remove(dst_model_file_path)
return top5_err, sha1_value
def process_fwk(prep_info_dict,
dst_framework,
dst_dir_path,
model_name,
model_file_path,
log_file_path,
input_size):
"""
Process weights on specific framework.
Parameters:
----------
prep_info_dict : dict
Dictionary with preparation meta-info.
dst_dir_path : str
Destination dir path.
model_name : str
Model name.
model_file_path : str
Model file path.
log_file_path : str
Log file path.
dst_framework : str
Destination framework.
input_size : int
Size of the input for model.
"""
if dst_framework == "gluon":
dst_model_file_ext = "params"
eval_script = "eval_gl"
num_gpus = 1
calc_flops = "--calc-flops"
log_line_num = -3
elif dst_framework == "pytorch":
dst_model_file_ext = "pth"
eval_script = "eval_pt"
num_gpus = 1
calc_flops = "--calc-flops"
log_line_num = -3
elif dst_framework == "chainer":
dst_model_file_ext = "npz"
eval_script = "eval_ch"
num_gpus = 1
calc_flops = ""
log_line_num = -2
elif dst_framework == "tf2":
dst_model_file_ext = "tf2.h5"
eval_script = "eval_tf2"
num_gpus = 1
calc_flops = ""
log_line_num = -2
else:
raise ValueError("Unknown framework: {}".format(dst_framework))
post_proc_log_files = [f for f in os.listdir(dst_dir_path) if f.endswith(".{}.log".format(dst_model_file_ext))]
assert (len(post_proc_log_files) in [0, 1])
if len(post_proc_log_files) == 0:
dst_raw_log_file_path = os.path.join(dst_dir_path, "train.log")
shutil.copy2(log_file_path, dst_raw_log_file_path)
dst_raw_model_file_path = os.path.join(dst_dir_path, "{}.{}".format(model_name, dst_model_file_ext))
if dst_framework == "gluon":
shutil.copy2(model_file_path, dst_raw_model_file_path)
else:
command = "python3 convert_models.py --src-fwk=gluon --dst-fwk={dst_framework} --src-model={model_name}" \
" --dst-model={model_name} --src-params={model_file_path}" \
" --dst-params={dst_raw_model_file_path} --save-dir={dst_dir_path}"
subprocess.call([command.format(
dst_framework=dst_framework,
model_name=model_name,
model_file_path=model_file_path,
dst_raw_model_file_path=dst_raw_model_file_path,
dst_dir_path=dst_dir_path)], shell=True)
command = "python3 {eval_script}.py --model={model_name} --resume={dst_raw_model_file_path}" \
" --save-dir={dst_dir_path} --num-gpus={num_gpus} --batch-size=100 -j=4 --input-size={input_size} " \
"{calc_flops}"
subprocess.call([command.format(
eval_script=eval_script,
model_name=model_name,
dst_raw_model_file_path=dst_raw_model_file_path,
dst_dir_path=dst_dir_path,
num_gpus=num_gpus,
input_size=input_size,
calc_flops=calc_flops)], shell=True)
if dst_framework == "gluon":
shutil.copy2(dst_raw_log_file_path, log_file_path)
top5_err, sha1_value = post_process(
dst_dir_path=dst_dir_path,
model_name=model_name,
model_file_path=dst_raw_model_file_path,
log_file_path=dst_raw_log_file_path,
dst_model_file_ext=dst_model_file_ext,
log_line_num=log_line_num)
else:
model_name1, top5_err, sha1_short = post_proc_log_files[0].split(".")[0].split("-")
assert (model_name1 == model_name)
dst_model_file_name = "{}-{}-{}.{}".format(model_name, top5_err, sha1_short, dst_model_file_ext)
dst_model_file_path = os.path.join(dst_dir_path, dst_model_file_name)
dst_zip_model_file_path = dst_model_file_path + ".zip"
assert os.path.exists(dst_zip_model_file_path)
with zipfile.ZipFile(dst_zip_model_file_path, "r") as zf:
zf.extract(dst_model_file_name, dst_dir_path)
sha1_value = calc_sha1(dst_model_file_path)
os.remove(dst_model_file_path)
prep_info_dict["Type"].append(dst_framework)
prep_info_dict["Top5"].append(top5_err)
prep_info_dict["Sha1"].append(sha1_value)
def main():
args = parse_args()
model_name = args.model
model_file_path = os.path.expanduser(args.resume)
if not os.path.exists(model_file_path):
raise Exception("Model file doesn't exist: {}".format(model_file_path))
root_dir_path = os.path.dirname(model_file_path)
log_file_path = os.path.join(root_dir_path, "train.log")
if not os.path.exists(log_file_path):
raise Exception("Log file doesn't exist: {}".format(log_file_path))
dst_dir_path = os.path.join(root_dir_path, "_result")
if not os.path.exists(dst_dir_path):
os.mkdir(dst_dir_path)
prep_info_dict = {
"Type": [],
"Top5": [],
"Sha1": [],
}
input_size = args.input_size
dst_frameworks = ["gluon", "pytorch", "chainer", "tf2"]
# dst_frameworks = ["tf2"]
for dst_framework in dst_frameworks:
process_fwk(
prep_info_dict=prep_info_dict,
dst_framework=dst_framework,
dst_dir_path=dst_dir_path,
model_name=model_name,
model_file_path=model_file_path,
log_file_path=log_file_path,
input_size=input_size)
prep_info_df = pd.DataFrame(prep_info_dict)
prep_info_df.to_csv(
os.path.join(root_dir_path, "prep_info.csv"),
sep="\t",
index=False)
if __name__ == '__main__':
main()