forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_pt.py
460 lines (412 loc) · 13.7 KB
/
eval_pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
"""
Script for evaluating trained model on PyTorch (validate/test).
"""
import os
import time
import logging
import argparse
from sys import version_info
from common.logger_utils import initialize_logging
from pytorch.utils import prepare_pt_context, prepare_model
from pytorch.utils import calc_net_weight_count, validate
from pytorch.utils import get_composite_metric
from pytorch.utils import report_accuracy
from pytorch.dataset_utils import get_dataset_metainfo
from pytorch.dataset_utils import get_val_data_source, get_test_data_source
from pytorch.model_stats import measure_model
from pytorch.pytorchcv.models.model_store import _model_sha1
def add_eval_cls_parser_arguments(parser):
"""
Create python script parameters (for eval specific subpart).
Parameters:
----------
parser : ArgumentParser
ArgumentParser instance.
"""
parser.add_argument(
"--model",
type=str,
required=True,
help="type of model to use. see model_provider for options")
parser.add_argument(
"--use-pretrained",
action="store_true",
help="enable using pretrained model from github repo")
parser.add_argument(
"--resume",
type=str,
default="",
help="resume from previously saved parameters")
parser.add_argument(
"--calc-flops",
dest="calc_flops",
action="store_true",
help="calculate FLOPs")
parser.add_argument(
"--calc-flops-only",
dest="calc_flops_only",
action="store_true",
help="calculate FLOPs without quality estimation")
parser.add_argument(
"--remove-module",
action="store_true",
help="enable if stored model has module")
parser.add_argument(
"--data-subset",
type=str,
default="val",
help="data subset. options are val and test")
parser.add_argument(
"--num-gpus",
type=int,
default=0,
help="number of gpus to use")
parser.add_argument(
"-j",
"--num-data-workers",
dest="num_workers",
default=4,
type=int,
help="number of preprocessing workers")
parser.add_argument(
"--batch-size",
type=int,
default=512,
help="training batch size per device (CPU/GPU)")
parser.add_argument(
"--save-dir",
type=str,
default="",
help="directory of saved models and log-files")
parser.add_argument(
"--logging-file-name",
type=str,
default="train.log",
help="filename of training log")
parser.add_argument(
"--log-packages",
type=str,
default="torch, torchvision",
help="list of python packages for logging")
parser.add_argument(
"--log-pip-packages",
type=str,
default="",
help="list of pip packages for logging")
parser.add_argument(
"--disable-cudnn-autotune",
action="store_true",
help="disable cudnn autotune for segmentation models")
parser.add_argument(
"--show-progress",
action="store_true",
help="show progress bar")
parser.add_argument(
"--all",
action="store_true",
help="test all pretrained models for partucular dataset")
def parse_args():
"""
Parse python script parameters (common part).
Returns:
-------
ArgumentParser
Resulted args.
"""
parser = argparse.ArgumentParser(
description="Evaluate a model for image classification/segmentation (PyTorch)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"--dataset",
type=str,
default="ImageNet1K",
help="dataset name. options are ImageNet1K, CUB200_2011, CIFAR10, CIFAR100, SVHN, VOC2012, ADE20K, Cityscapes, "
"COCO, LibriSpeech, MCV")
parser.add_argument(
"--work-dir",
type=str,
default=os.path.join("..", "imgclsmob_data"),
help="path to working directory only for dataset root path preset")
args, _ = parser.parse_known_args()
dataset_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
dataset_metainfo.add_dataset_parser_arguments(
parser=parser,
work_dir_path=args.work_dir)
add_eval_cls_parser_arguments(parser)
args = parser.parse_args()
return args
def prepare_dataset_metainfo(args):
"""
Get dataset metainfo by name of dataset.
Parameters:
----------
args : ArgumentParser
Main script arguments.
Returns:
-------
DatasetMetaInfo
Dataset metainfo.
"""
ds_metainfo = get_dataset_metainfo(dataset_name=args.dataset)
ds_metainfo.update(args=args)
assert (ds_metainfo.ml_type != "imgseg") or (args.batch_size == 1)
assert (ds_metainfo.ml_type != "imgseg") or args.disable_cudnn_autotune
return ds_metainfo
def prepare_data_source(ds_metainfo,
data_subset,
batch_size,
num_workers):
"""
Prepare data loader.
Parameters:
----------
ds_metainfo : DatasetMetaInfo
Dataset metainfo.
data_subset : str
Data subset.
batch_size : int
Batch size.
num_workers : int
Number of background workers.
Returns:
-------
DataLoader
Data source.
"""
assert (data_subset in ("val", "test"))
if data_subset == "val":
get_data_source_class = get_val_data_source
else:
get_data_source_class = get_test_data_source
data_source = get_data_source_class(
ds_metainfo=ds_metainfo,
batch_size=batch_size,
num_workers=num_workers)
return data_source
def prepare_metric(ds_metainfo,
data_subset):
"""
Prepare metric.
Parameters:
----------
ds_metainfo : DatasetMetaInfo
Dataset metainfo.
data_subset : str
Data subset.
Returns:
-------
CompositeEvalMetric
Metric object instance.
"""
assert (data_subset in ("val", "test"))
if data_subset == "val":
metric_names = ds_metainfo.val_metric_names
metric_extra_kwargs = ds_metainfo.val_metric_extra_kwargs
else:
metric_names = ds_metainfo.test_metric_names
metric_extra_kwargs = ds_metainfo.test_metric_extra_kwargs
metric = get_composite_metric(
metric_names=metric_names,
metric_extra_kwargs=metric_extra_kwargs)
return metric
def update_input_image_size(net,
input_size):
"""
Update input image size for model.
Parameters:
----------
net : Module
Model.
input_size : int
Preliminary value for input image size.
Returns:
-------
tuple of 2 ints
Spatial size of the expected input image.
"""
real_net = net.module if hasattr(net, "module") else net
input_image_size = real_net.in_size if hasattr(real_net, "in_size") else\
((input_size, input_size) if type(input_size) == int else input_size)
return input_image_size
def calc_model_accuracy(net,
test_data,
metric,
use_cuda,
input_image_size,
in_channels,
calc_weight_count=False,
calc_flops=False,
calc_flops_only=True,
extended_log=False,
ml_type="cls"):
"""
Estimating particular model accuracy.
Parameters:
----------
net : Module
Model.
test_data : DataLoader
Data loader.
metric : EvalMetric
Metric object instance.
use_cuda : bool
Whether to use CUDA.
input_image_size : tuple of 2 ints
Spatial size of the expected input image.
in_channels : int
Number of input channels.
calc_weight_count : bool, default False
Whether to calculate count of weights.
calc_flops : bool, default False
Whether to calculate FLOPs.
calc_flops_only : bool, default True
Whether to only calculate FLOPs without testing.
extended_log : bool, default False
Whether to log more precise accuracy values.
ml_type : str, default 'cls'
Machine learning type.
Returns:
-------
list of floats
Accuracy values.
"""
if not calc_flops_only:
tic = time.time()
validate(
metric=metric,
net=net,
val_data=test_data,
use_cuda=use_cuda)
accuracy_msg = report_accuracy(
metric=metric,
extended_log=extended_log)
logging.info("Test: {}".format(accuracy_msg))
logging.info("Time cost: {:.4f} sec".format(
time.time() - tic))
acc_values = metric.get()[1]
acc_values = acc_values if type(acc_values) == list else [acc_values]
else:
acc_values = []
if calc_weight_count:
weight_count = calc_net_weight_count(net)
if not calc_flops:
logging.info("Model: {} trainable parameters".format(weight_count))
if calc_flops:
in_shapes = [(1, input_image_size, 100), (1,)] if ml_type == "asr" else\
[(1, in_channels, input_image_size[0], input_image_size[1])]
num_flops, num_macs, num_params = measure_model(
model=net,
in_shapes=in_shapes)
assert (not calc_weight_count) or (weight_count == num_params)
stat_msg = "Params: {params} ({params_m:.2f}M), FLOPs: {flops} ({flops_m:.2f}M)," \
" FLOPs/2: {flops2} ({flops2_m:.2f}M), MACs: {macs} ({macs_m:.2f}M)"
logging.info(stat_msg.format(
params=num_params, params_m=num_params / 1e6,
flops=num_flops, flops_m=num_flops / 1e6,
flops2=num_flops / 2, flops2_m=num_flops / 2 / 1e6,
macs=num_macs, macs_m=num_macs / 1e6))
return acc_values
def test_model(args):
"""
Main test routine.
Parameters:
----------
args : ArgumentParser
Main script arguments.
Returns:
-------
float
Main accuracy value.
"""
ds_metainfo = prepare_dataset_metainfo(args=args)
use_cuda, batch_size = prepare_pt_context(
num_gpus=args.num_gpus,
batch_size=args.batch_size)
data_source = prepare_data_source(
ds_metainfo=ds_metainfo,
data_subset=args.data_subset,
batch_size=batch_size,
num_workers=args.num_workers)
metric = prepare_metric(
ds_metainfo=ds_metainfo,
data_subset=args.data_subset)
net = prepare_model(
model_name=args.model,
use_pretrained=args.use_pretrained,
pretrained_model_file_path=args.resume.strip(),
use_cuda=use_cuda,
num_classes=(args.num_classes if ds_metainfo.ml_type != "hpe" else None),
in_channels=args.in_channels,
net_extra_kwargs=ds_metainfo.test_net_extra_kwargs,
load_ignore_extra=ds_metainfo.load_ignore_extra,
remove_module=args.remove_module)
input_image_size = update_input_image_size(
net=net,
input_size=(args.input_size if hasattr(args, "input_size") else None))
if args.show_progress:
from tqdm import tqdm
data_source = tqdm(data_source)
assert (args.use_pretrained or args.resume.strip() or args.calc_flops_only)
acc_values = calc_model_accuracy(
net=net,
test_data=data_source,
metric=metric,
use_cuda=use_cuda,
input_image_size=input_image_size,
in_channels=args.in_channels,
calc_weight_count=True,
calc_flops=args.calc_flops,
calc_flops_only=args.calc_flops_only,
extended_log=True,
ml_type=ds_metainfo.ml_type)
return acc_values[ds_metainfo.saver_acc_ind] if len(acc_values) > 0 else None
def main():
"""
Main body of script.
"""
args = parse_args()
if args.disable_cudnn_autotune:
os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0"
_, log_file_exist = initialize_logging(
logging_dir_path=args.save_dir,
logging_file_name=args.logging_file_name,
script_args=args,
log_packages=args.log_packages,
log_pip_packages=args.log_pip_packages)
if args.all:
args.use_pretrained = True
dataset_name_map = {
"in1k": "ImageNet1K",
"cub": "CUB200_2011",
"cf10": "CIFAR10",
"cf100": "CIFAR100",
"svhn": "SVHN",
"voc": "VOC",
"ade20k": "ADE20K",
"cs": "Cityscapes",
"cocoseg": "CocoSeg",
"cocohpe": "CocoHpe",
"hp": "HPatches",
"ls": "LibriSpeech",
"mcv": "MCV",
}
for model_name, model_metainfo in (_model_sha1.items() if version_info[0] >= 3 else _model_sha1.iteritems()):
error, checksum, repo_release_tag, caption, paper, ds, img_size, scale, batch, rem = model_metainfo
if (ds != "in1k") or (img_size == 0) or ((len(rem) > 0) and (rem[-1] == "*")):
continue
args.dataset = dataset_name_map[ds]
args.model = model_name
args.input_size = img_size
args.resize_inv_factor = scale
args.batch_size = batch
logging.info("==============")
logging.info("Checking model: {}".format(model_name))
acc_value = test_model(args=args)
if acc_value is not None:
exp_value = int(error) * 1e-4
if abs(acc_value - exp_value) > 2e-4:
logging.info("----> Wrong value detected (expected value: {})!".format(exp_value))
else:
test_model(args=args)
if __name__ == "__main__":
main()