-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfips140-selftests.c
998 lines (940 loc) · 29.8 KB
/
fips140-selftests.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2021 Google LLC
*
* Authors: Elena Petrova <[email protected]>,
* Eric Biggers <[email protected]>
*
* Self-tests of fips140.ko cryptographic functionality. These are run at
* module load time to fulfill FIPS 140 and NIAP FPT_TST_EXT.1 requirements.
*
* The actual requirements for these self-tests are somewhat vague, but
* section 9 ("Self-Tests") of the FIPS 140-2 Implementation Guidance document
* (https://csrc.nist.gov/csrc/media/projects/cryptographic-module-validation-program/documents/fips140-2/fips1402ig.pdf)
* is somewhat helpful. Basically, all implementations of all FIPS approved
* algorithms (including modes of operation) must be tested. However:
*
* - There are provisions for skipping tests that are already sufficiently
* covered by other tests. E.g., HMAC-SHA256 may cover SHA-256.
*
* - Only one test vector is required per algorithm, and it can be generated
* by any known-good implementation or taken from any official document.
*
* - For ciphers, both encryption and decryption must be tested.
*
* - Only one key size per algorithm needs to be tested.
*
* There is some ambiguity about whether all implementations of each algorithm
* must be tested, or whether it is sufficient to test just the highest priority
* implementation. To be safe we test all implementations, except ones that can
* be excluded by one of the rules above.
*
* See fips140_selftests[] for the list of tests we've selected. Currently, all
* our test vectors except the AES-CBC-CTS and DRBG ones were generated by the
* script tools/crypto/gen_fips140_testvecs.py, using the known-good
* implementations in the Python packages hashlib, pycryptodome, and
* cryptography.
*
* Note that we don't reuse the upstream crypto API's self-tests
* (crypto/testmgr.{c,h}), for several reasons:
*
* - To meet FIPS requirements, the self-tests must be located within the FIPS
* module boundary (fips140.ko). But testmgr is integrated into the crypto
* API framework and can't be extracted into the module.
*
* - testmgr is much more heavyweight than required for FIPS and NIAP; it
* tests more algorithms and does more tests per algorithm, as it's meant to
* do proper testing and not just meet certification requirements. We need
* tests that can run with minimal overhead on every boot-up.
*
* - Despite being more heavyweight in general, testmgr doesn't test the
* SHA-256 and AES library APIs, despite that being needed here.
*/
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/drbg.h>
#include <crypto/hash.h>
#include <crypto/rng.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include "fips140-module.h"
/* Test vector for an AEAD algorithm */
struct aead_testvec {
const u8 *key;
size_t key_size;
const u8 *iv;
size_t iv_size;
const u8 *assoc;
size_t assoc_size;
const u8 *plaintext;
size_t plaintext_size;
const u8 *ciphertext;
size_t ciphertext_size;
};
/* Test vector for a length-preserving encryption algorithm */
struct skcipher_testvec {
const u8 *key;
size_t key_size;
const u8 *iv;
size_t iv_size;
const u8 *plaintext;
const u8 *ciphertext;
size_t message_size;
};
/* Test vector for a hash algorithm */
struct hash_testvec {
const u8 *key;
size_t key_size;
const u8 *message;
size_t message_size;
const u8 *digest;
size_t digest_size;
};
/* Test vector for a DRBG algorithm */
struct drbg_testvec {
const u8 *entropy;
size_t entropy_size;
const u8 *pers;
size_t pers_size;
const u8 *entpr_a;
const u8 *entpr_b;
size_t entpr_size;
const u8 *add_a;
const u8 *add_b;
size_t add_size;
const u8 *output;
size_t out_size;
};
struct fips_test {
/* The name of the algorithm, in crypto API syntax */
const char *alg;
/*
* The optional list of implementations to test. @func will be called
* once per implementation, or once with @alg if this list is empty.
* The implementation names must be given in crypto API syntax, or in
* the case of a library implementation should have "-lib" appended.
*/
const char *impls[8];
/*
* The test function. It should execute a known-answer test on an
* algorithm implementation, using the below test vector.
*/
int __must_check (*func)(const struct fips_test *test,
const char *impl);
/* The test vector, with a format specific to the type of algorithm */
union {
struct aead_testvec aead;
struct skcipher_testvec skcipher;
struct hash_testvec hash;
struct drbg_testvec drbg;
};
};
/* Maximum IV size (in bytes) among any algorithm tested here */
#define MAX_IV_SIZE 16
static int __init __must_check
fips_check_result(u8 *result, const u8 *expected_result, size_t result_size,
const char *impl, const char *operation)
{
fips140_inject_selftest_failure(impl, result);
if (memcmp(result, expected_result, result_size) != 0) {
pr_err("wrong result from %s %s\n", impl, operation);
return -EBADMSG;
}
return 0;
}
/*
* None of the algorithms should be ASYNC, as the FIPS module doesn't register
* any ASYNC algorithms. (The ASYNC flag is only declared by hardware
* algorithms, which would need their own FIPS certification.)
*
* Ideally we would verify alg->cra_module == THIS_MODULE here as well, but that
* doesn't work because the files are compiled as built-in code.
*/
static int __init __must_check
fips_validate_alg(const struct crypto_alg *alg)
{
if (alg->cra_flags & CRYPTO_ALG_ASYNC) {
pr_err("unexpectedly got async implementation of %s (%s)\n",
alg->cra_name, alg->cra_driver_name);
return -EINVAL;
}
return 0;
}
static int __init __must_check
fips_handle_alloc_tfm_error(const char *impl, int err)
{
if (err == -ENOENT) {
/*
* The requested implementation of the algorithm wasn't found.
* This is expected if the CPU lacks a feature the
* implementation needs, such as the ARMv8 Crypto Extensions.
*
* When this happens, the implementation isn't available for
* use, so we can't test it, nor do we need to. So we just skip
* the test.
*/
pr_info("%s is unavailable (no CPU support?), skipping testing it\n",
impl);
return 0;
}
pr_err("failed to allocate %s tfm: %d\n", impl, err);
return err;
}
static int __init __must_check
fips_test_aes_library(const struct fips_test *test, const char *impl)
{
const struct skcipher_testvec *vec = &test->skcipher;
struct crypto_aes_ctx ctx;
u8 block[AES_BLOCK_SIZE];
int err;
if (WARN_ON(vec->message_size != AES_BLOCK_SIZE))
return -EINVAL;
err = aes_expandkey(&ctx, vec->key, vec->key_size);
if (err) {
pr_err("aes_expandkey() failed: %d\n", err);
return err;
}
aes_encrypt(&ctx, block, vec->plaintext);
err = fips_check_result(block, vec->ciphertext, AES_BLOCK_SIZE,
impl, "encryption");
if (err)
return err;
aes_decrypt(&ctx, block, block);
return fips_check_result(block, vec->plaintext, AES_BLOCK_SIZE,
impl, "decryption");
}
/* Test a length-preserving symmetric cipher using the crypto_skcipher API. */
static int __init __must_check
fips_test_skcipher(const struct fips_test *test, const char *impl)
{
const struct skcipher_testvec *vec = &test->skcipher;
struct crypto_skcipher *tfm;
struct skcipher_request *req = NULL;
u8 *message = NULL;
struct scatterlist sg;
u8 iv[MAX_IV_SIZE];
int err;
if (WARN_ON(vec->iv_size > MAX_IV_SIZE))
return -EINVAL;
if (WARN_ON(vec->message_size <= 0))
return -EINVAL;
tfm = crypto_alloc_skcipher(impl, 0, 0);
if (IS_ERR(tfm))
return fips_handle_alloc_tfm_error(impl, PTR_ERR(tfm));
err = fips_validate_alg(&crypto_skcipher_alg(tfm)->base);
if (err)
goto out;
if (crypto_skcipher_ivsize(tfm) != vec->iv_size) {
pr_err("%s has wrong IV size\n", impl);
err = -EINVAL;
goto out;
}
req = skcipher_request_alloc(tfm, GFP_KERNEL);
message = kmemdup(vec->plaintext, vec->message_size, GFP_KERNEL);
if (!req || !message) {
err = -ENOMEM;
goto out;
}
sg_init_one(&sg, message, vec->message_size);
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
NULL, NULL);
skcipher_request_set_crypt(req, &sg, &sg, vec->message_size, iv);
err = crypto_skcipher_setkey(tfm, vec->key, vec->key_size);
if (err) {
pr_err("failed to set %s key: %d\n", impl, err);
goto out;
}
/* Encrypt the plaintext, then verify the resulting ciphertext. */
memcpy(iv, vec->iv, vec->iv_size);
err = crypto_skcipher_encrypt(req);
if (err) {
pr_err("%s encryption failed: %d\n", impl, err);
goto out;
}
err = fips_check_result(message, vec->ciphertext, vec->message_size,
impl, "encryption");
if (err)
goto out;
/* Decrypt the ciphertext, then verify the resulting plaintext. */
memcpy(iv, vec->iv, vec->iv_size);
err = crypto_skcipher_decrypt(req);
if (err) {
pr_err("%s decryption failed: %d\n", impl, err);
goto out;
}
err = fips_check_result(message, vec->plaintext, vec->message_size,
impl, "decryption");
out:
kfree(message);
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return err;
}
/* Test an AEAD using the crypto_aead API. */
static int __init __must_check
fips_test_aead(const struct fips_test *test, const char *impl)
{
const struct aead_testvec *vec = &test->aead;
const int tag_size = vec->ciphertext_size - vec->plaintext_size;
struct crypto_aead *tfm;
struct aead_request *req = NULL;
u8 *assoc = NULL;
u8 *message = NULL;
struct scatterlist sg[2];
int sg_idx = 0;
u8 iv[MAX_IV_SIZE];
int err;
if (WARN_ON(vec->iv_size > MAX_IV_SIZE))
return -EINVAL;
if (WARN_ON(vec->ciphertext_size <= vec->plaintext_size))
return -EINVAL;
tfm = crypto_alloc_aead(impl, 0, 0);
if (IS_ERR(tfm))
return fips_handle_alloc_tfm_error(impl, PTR_ERR(tfm));
err = fips_validate_alg(&crypto_aead_alg(tfm)->base);
if (err)
goto out;
if (crypto_aead_ivsize(tfm) != vec->iv_size) {
pr_err("%s has wrong IV size\n", impl);
err = -EINVAL;
goto out;
}
req = aead_request_alloc(tfm, GFP_KERNEL);
assoc = kmemdup(vec->assoc, vec->assoc_size, GFP_KERNEL);
message = kzalloc(vec->ciphertext_size, GFP_KERNEL);
if (!req || !assoc || !message) {
err = -ENOMEM;
goto out;
}
memcpy(message, vec->plaintext, vec->plaintext_size);
sg_init_table(sg, ARRAY_SIZE(sg));
if (vec->assoc_size)
sg_set_buf(&sg[sg_idx++], assoc, vec->assoc_size);
sg_set_buf(&sg[sg_idx++], message, vec->ciphertext_size);
aead_request_set_ad(req, vec->assoc_size);
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
err = crypto_aead_setkey(tfm, vec->key, vec->key_size);
if (err) {
pr_err("failed to set %s key: %d\n", impl, err);
goto out;
}
err = crypto_aead_setauthsize(tfm, tag_size);
if (err) {
pr_err("failed to set %s authentication tag size: %d\n",
impl, err);
goto out;
}
/*
* Encrypt the plaintext, then verify the resulting ciphertext (which
* includes the authentication tag).
*/
memcpy(iv, vec->iv, vec->iv_size);
aead_request_set_crypt(req, sg, sg, vec->plaintext_size, iv);
err = crypto_aead_encrypt(req);
if (err) {
pr_err("%s encryption failed: %d\n", impl, err);
goto out;
}
err = fips_check_result(message, vec->ciphertext, vec->ciphertext_size,
impl, "encryption");
if (err)
goto out;
/*
* Decrypt the ciphertext (which includes the authentication tag), then
* verify the resulting plaintext.
*/
memcpy(iv, vec->iv, vec->iv_size);
aead_request_set_crypt(req, sg, sg, vec->ciphertext_size, iv);
err = crypto_aead_decrypt(req);
if (err) {
pr_err("%s decryption failed: %d\n", impl, err);
goto out;
}
err = fips_check_result(message, vec->plaintext, vec->plaintext_size,
impl, "decryption");
out:
kfree(message);
kfree(assoc);
aead_request_free(req);
crypto_free_aead(tfm);
return err;
}
/*
* Test a hash algorithm using the crypto_shash API.
*
* Note that we don't need to test the crypto_ahash API too, since none of the
* hash algorithms in the FIPS module have the ASYNC flag, and thus there will
* be no hash algorithms that can be accessed only through crypto_ahash.
*/
static int __init __must_check
fips_test_hash(const struct fips_test *test, const char *impl)
{
const struct hash_testvec *vec = &test->hash;
struct crypto_shash *tfm;
u8 digest[HASH_MAX_DIGESTSIZE];
int err;
if (WARN_ON(vec->digest_size > HASH_MAX_DIGESTSIZE))
return -EINVAL;
tfm = crypto_alloc_shash(impl, 0, 0);
if (IS_ERR(tfm))
return fips_handle_alloc_tfm_error(impl, PTR_ERR(tfm));
err = fips_validate_alg(&crypto_shash_alg(tfm)->base);
if (err)
goto out;
if (crypto_shash_digestsize(tfm) != vec->digest_size) {
pr_err("%s has wrong digest size\n", impl);
err = -EINVAL;
goto out;
}
if (vec->key) {
err = crypto_shash_setkey(tfm, vec->key, vec->key_size);
if (err) {
pr_err("failed to set %s key: %d\n", impl, err);
goto out;
}
}
err = crypto_shash_tfm_digest(tfm, vec->message, vec->message_size,
digest);
if (err) {
pr_err("%s digest computation failed: %d\n", impl, err);
goto out;
}
err = fips_check_result(digest, vec->digest, vec->digest_size,
impl, "digest");
out:
crypto_free_shash(tfm);
return err;
}
static int __init __must_check
fips_test_sha256_library(const struct fips_test *test, const char *impl)
{
const struct hash_testvec *vec = &test->hash;
u8 digest[SHA256_DIGEST_SIZE];
if (WARN_ON(vec->digest_size != SHA256_DIGEST_SIZE))
return -EINVAL;
sha256(vec->message, vec->message_size, digest);
return fips_check_result(digest, vec->digest, vec->digest_size,
impl, "digest");
}
/* Test a DRBG using the crypto_rng API. */
static int __init __must_check
fips_test_drbg(const struct fips_test *test, const char *impl)
{
const struct drbg_testvec *vec = &test->drbg;
struct crypto_rng *rng;
u8 *output = NULL;
struct drbg_test_data test_data;
struct drbg_string addtl, pers, testentropy;
int err;
rng = crypto_alloc_rng(impl, 0, 0);
if (IS_ERR(rng))
return fips_handle_alloc_tfm_error(impl, PTR_ERR(rng));
err = fips_validate_alg(&crypto_rng_alg(rng)->base);
if (err)
goto out;
output = kzalloc(vec->out_size, GFP_KERNEL);
if (!output) {
err = -ENOMEM;
goto out;
}
/*
* Initialize the DRBG with the entropy and personalization string given
* in the test vector.
*/
test_data.testentropy = &testentropy;
drbg_string_fill(&testentropy, vec->entropy, vec->entropy_size);
drbg_string_fill(&pers, vec->pers, vec->pers_size);
err = crypto_drbg_reset_test(rng, &pers, &test_data);
if (err) {
pr_err("failed to reset %s\n", impl);
goto out;
}
/*
* Generate some random bytes using the additional data string provided
* in the test vector. Also use the additional entropy if provided
* (relevant for the prediction-resistant DRBG variants only).
*/
drbg_string_fill(&addtl, vec->add_a, vec->add_size);
if (vec->entpr_size) {
drbg_string_fill(&testentropy, vec->entpr_a, vec->entpr_size);
err = crypto_drbg_get_bytes_addtl_test(rng, output,
vec->out_size, &addtl,
&test_data);
} else {
err = crypto_drbg_get_bytes_addtl(rng, output, vec->out_size,
&addtl);
}
if (err) {
pr_err("failed to get bytes from %s (try 1): %d\n",
impl, err);
goto out;
}
/*
* Do the same again, using a second additional data string, and (when
* applicable) a second additional entropy string.
*/
drbg_string_fill(&addtl, vec->add_b, vec->add_size);
if (test->drbg.entpr_size) {
drbg_string_fill(&testentropy, vec->entpr_b, vec->entpr_size);
err = crypto_drbg_get_bytes_addtl_test(rng, output,
vec->out_size, &addtl,
&test_data);
} else {
err = crypto_drbg_get_bytes_addtl(rng, output, vec->out_size,
&addtl);
}
if (err) {
pr_err("failed to get bytes from %s (try 2): %d\n",
impl, err);
goto out;
}
/* Check that the DRBG generated the expected output. */
err = fips_check_result(output, vec->output, vec->out_size,
impl, "get_bytes");
out:
kfree(output);
crypto_free_rng(rng);
return err;
}
/* Include the test vectors generated by the Python script. */
#include "fips140-generated-testvecs.h"
/*
* List of all self-tests. Keep this in sync with fips140_algorithms[].
*
* When possible, we have followed the FIPS 140-2 Implementation Guidance (IG)
* document when creating this list of tests. The result is intended to be a
* list of tests that is near-minimal (and thus minimizes runtime overhead)
* while complying with all requirements. For additional details, see the
* comment at the beginning of this file.
*/
static const struct fips_test fips140_selftests[] __initconst = {
/*
* Test for the AES library API.
*
* Since the AES library API may use its own AES implementation and the
* module provides no support for composing it with a mode of operation
* (it's just plain AES), we must test it directly.
*
* In contrast, we don't need to directly test the "aes" ciphers that
* are accessible through the crypto_cipher API (e.g. "aes-ce"), as they
* are covered indirectly by AES-CMAC and AES-ECB tests.
*/
{
.alg = "aes",
.impls = {"aes-lib"},
.func = fips_test_aes_library,
.skcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.plaintext = fips_message,
.ciphertext = fips_aes_ecb_ciphertext,
.message_size = 16,
}
},
/*
* Tests for AES-CMAC, a.k.a. "cmac(aes)" in crypto API syntax.
*
* The IG requires that each underlying AES implementation be tested in
* an authenticated mode, if implemented. Of such modes, this module
* implements AES-GCM and AES-CMAC. However, AES-GCM doesn't "count"
* because this module's implementations of AES-GCM won't actually be
* FIPS-approved, due to a quirk in the FIPS requirements.
*
* Therefore, for us this requirement applies to AES-CMAC, so we must
* test the "cmac" template composed with each "aes" implementation.
*
* Separately from the above, we also must test all standalone
* implementations of "cmac(aes)" such as "cmac-aes-ce", as they don't
* reuse another full AES implementation and thus can't be covered by
* another test.
*/
{
.alg = "cmac(aes)",
.impls = {
/* "cmac" template with all "aes" implementations */
"cmac(aes-generic)",
"cmac(aes-arm64)",
"cmac(aes-ce)",
/* All standalone implementations of "cmac(aes)" */
"cmac-aes-neon",
"cmac-aes-ce",
},
.func = fips_test_hash,
.hash = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_aes_cmac_digest,
.digest_size = sizeof(fips_aes_cmac_digest),
}
},
/*
* Tests for AES-ECB, a.k.a. "ecb(aes)" in crypto API syntax.
*
* The IG requires that each underlying AES implementation be tested in
* a mode that exercises the encryption direction of AES and in a mode
* that exercises the decryption direction of AES. CMAC only covers the
* encryption direction, so we choose ECB to test decryption. Thus, we
* test the "ecb" template composed with each "aes" implementation.
*
* Separately from the above, we also must test all standalone
* implementations of "ecb(aes)" such as "ecb-aes-ce", as they don't
* reuse another full AES implementation and thus can't be covered by
* another test.
*/
{
.alg = "ecb(aes)",
.impls = {
/* "ecb" template with all "aes" implementations */
"ecb(aes-generic)",
"ecb(aes-arm64)",
"ecb(aes-ce)",
/* All standalone implementations of "ecb(aes)" */
"ecb-aes-neon",
"ecb-aes-neonbs",
"ecb-aes-ce",
},
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.plaintext = fips_message,
.ciphertext = fips_aes_ecb_ciphertext,
.message_size = sizeof(fips_message)
}
},
/*
* Tests for AES-CBC, AES-CBC-CTS, AES-CTR, AES-XTS, and AES-GCM.
*
* According to the IG, an AES mode of operation doesn't need to have
* its own test, provided that (a) both the encryption and decryption
* directions of the underlying AES implementation are already tested
* via other mode(s), and (b) in the case of an authenticated mode, at
* least one other authenticated mode is already tested. The tests of
* the "cmac" and "ecb" templates fulfill these conditions; therefore,
* we don't need to test any other AES mode templates.
*
* This does *not* apply to standalone implementations of these modes
* such as "cbc-aes-ce", as such implementations don't reuse another
* full AES implementation and thus can't be covered by another test.
* We must test all such standalone implementations.
*
* The AES-GCM test isn't actually required, as it's expected that this
* module's AES-GCM implementation won't actually be able to be
* FIPS-approved. This is unfortunate; it's caused by the FIPS
* requirements for GCM being incompatible with GCM implementations that
* don't generate their own IVs. We choose to still include the AES-GCM
* test to keep it on par with the other FIPS-approved algorithms, in
* case it turns out that AES-GCM can be approved after all.
*/
{
.alg = "cbc(aes)",
.impls = {
/* All standalone implementations of "cbc(aes)" */
"cbc-aes-neon",
"cbc-aes-neonbs",
"cbc-aes-ce",
},
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.iv = fips_aes_iv,
.iv_size = sizeof(fips_aes_iv),
.plaintext = fips_message,
.ciphertext = fips_aes_cbc_ciphertext,
.message_size = sizeof(fips_message),
}
}, {
.alg = "cts(cbc(aes))",
.impls = {
/* All standalone implementations of "cts(cbc(aes))" */
"cts-cbc-aes-neon",
"cts-cbc-aes-ce",
},
.func = fips_test_skcipher,
/* Test vector taken from RFC 3962 */
.skcipher = {
.key = "\x63\x68\x69\x63\x6b\x65\x6e\x20"
"\x74\x65\x72\x69\x79\x61\x6b\x69",
.key_size = 16,
.iv = "\x00\x00\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x00\x00\x00",
.iv_size = 16,
.plaintext = "\x49\x20\x77\x6f\x75\x6c\x64\x20"
"\x6c\x69\x6b\x65\x20\x74\x68\x65"
"\x20\x47\x65\x6e\x65\x72\x61\x6c"
"\x20\x47\x61\x75\x27\x73\x20",
.ciphertext = "\xfc\x00\x78\x3e\x0e\xfd\xb2\xc1"
"\xd4\x45\xd4\xc8\xef\xf7\xed\x22"
"\x97\x68\x72\x68\xd6\xec\xcc\xc0"
"\xc0\x7b\x25\xe2\x5e\xcf\xe5",
.message_size = 31,
}
}, {
.alg = "ctr(aes)",
.impls = {
/* All standalone implementations of "ctr(aes)" */
"ctr-aes-neon",
"ctr-aes-neonbs",
"ctr-aes-ce",
},
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.iv = fips_aes_iv,
.iv_size = sizeof(fips_aes_iv),
.plaintext = fips_message,
.ciphertext = fips_aes_ctr_ciphertext,
.message_size = sizeof(fips_message),
}
}, {
.alg = "xts(aes)",
.impls = {
/* All standalone implementations of "xts(aes)" */
"xts-aes-neon",
"xts-aes-neonbs",
"xts-aes-ce",
},
.func = fips_test_skcipher,
.skcipher = {
.key = fips_aes_xts_key,
.key_size = sizeof(fips_aes_xts_key),
.iv = fips_aes_iv,
.iv_size = sizeof(fips_aes_iv),
.plaintext = fips_message,
.ciphertext = fips_aes_xts_ciphertext,
.message_size = sizeof(fips_message),
}
}, {
.alg = "gcm(aes)",
.impls = {
/* All standalone implementations of "gcm(aes)" */
"gcm-aes-ce",
},
.func = fips_test_aead,
.aead = {
.key = fips_aes_key,
.key_size = sizeof(fips_aes_key),
.iv = fips_aes_iv,
/* The GCM implementations assume an IV size of 12. */
.iv_size = 12,
.assoc = fips_aes_gcm_assoc,
.assoc_size = sizeof(fips_aes_gcm_assoc),
.plaintext = fips_message,
.plaintext_size = sizeof(fips_message),
.ciphertext = fips_aes_gcm_ciphertext,
.ciphertext_size = sizeof(fips_aes_gcm_ciphertext),
}
},
/* Tests for SHA-1 */
{
.alg = "sha1",
.impls = {
/* All implementations of "sha1" */
"sha1-generic",
"sha1-ce"
},
.func = fips_test_hash,
.hash = {
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_sha1_digest,
.digest_size = sizeof(fips_sha1_digest)
}
},
/*
* Tests for all SHA-256 implementations other than the sha256() library
* function. As per the IG, these tests also fulfill the tests for the
* corresponding SHA-224 implementations.
*/
{
.alg = "sha256",
.impls = {
/* All implementations of "sha256" */
"sha256-generic",
"sha256-arm64",
"sha256-ce",
},
.func = fips_test_hash,
.hash = {
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_sha256_digest,
.digest_size = sizeof(fips_sha256_digest)
}
},
/*
* Test for the sha256() library function. This must be tested
* separately because it may use its own SHA-256 implementation.
*/
{
.alg = "sha256",
.impls = {"sha256-lib"},
.func = fips_test_sha256_library,
.hash = {
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_sha256_digest,
.digest_size = sizeof(fips_sha256_digest)
}
},
/*
* Tests for all SHA-512 implementations. As per the IG, these tests
* also fulfill the tests for the corresponding SHA-384 implementations.
*/
{
.alg = "sha512",
.impls = {
/* All implementations of "sha512" */
"sha512-generic",
"sha512-arm64",
"sha512-ce",
},
.func = fips_test_hash,
.hash = {
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_sha512_digest,
.digest_size = sizeof(fips_sha512_digest)
}
},
/*
* Test for HMAC. As per the IG, only one HMAC test is required,
* provided that the same HMAC code is shared by all HMAC-SHA*. This is
* true in our case. We choose HMAC-SHA256 for the test.
*
* Note that as per the IG, this can fulfill the test for the underlying
* SHA. However, we don't currently rely on this.
*/
{
.alg = "hmac(sha256)",
.func = fips_test_hash,
.hash = {
.key = fips_hmac_key,
.key_size = sizeof(fips_hmac_key),
.message = fips_message,
.message_size = sizeof(fips_message),
.digest = fips_hmac_sha256_digest,
.digest_size = sizeof(fips_hmac_sha256_digest)
}
},
/*
* Known-answer tests for the SP800-90A DRBG algorithms.
*
* These test vectors were manually extracted from
* https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/drbg/drbgtestvectors.zip.
*
* The selection of these tests follows the FIPS 140-2 IG as well as
* Section 11 of SP800-90A:
*
* - We must test all DRBG types (HMAC, Hash, and CTR) that the module
* implements. However, currently the module only implements
* HMAC_DRBG (since CONFIG_CRYPTO_DRBG_CTR and CONFIG_CRYPTO_DRBG_HASH
* aren't enabled). Therefore, we only need to test HMAC_DRBG.
*
* - We only need to test one HMAC variant.
*
* - We must test all DRBG operations: Instantiate(), Reseed(), and
* Generate(). However, a single test sequence with a single output
* comparison may cover all three operations, and this is what we do.
* Note that Reseed() happens implicitly via the use of the additional
* input and also via the use of prediction resistance when enabled.
*
* - The personalization string, additional input, and prediction
* resistance support must be tested. Therefore we have chosen test
* vectors that have a nonempty personalization string and nonempty
* additional input, and we test the prediction-resistant variant.
* Testing the non-prediction-resistant variant is not required.
*/
{
.alg = "drbg_pr_hmac_sha256",
.func = fips_test_drbg,
.drbg = {
.entropy =
"\xc7\xcc\xbc\x67\x7e\x21\x66\x1e\x27\x2b\x63\xdd"
"\x3a\x78\xdc\xdf\x66\x6d\x3f\x24\xae\xcf\x37\x01"
"\xa9\x0d\x89\x8a\xa7\xdc\x81\x58\xae\xb2\x10\x15"
"\x7e\x18\x44\x6d\x13\xea\xdf\x37\x85\xfe\x81\xfb",
.entropy_size = 48,
.entpr_a =
"\x7b\xa1\x91\x5b\x3c\x04\xc4\x1b\x1d\x19\x2f\x1a"
"\x18\x81\x60\x3c\x6c\x62\x91\xb7\xe9\xf5\xcb\x96"
"\xbb\x81\x6a\xcc\xb5\xae\x55\xb6",
.entpr_b =
"\x99\x2c\xc7\x78\x7e\x3b\x88\x12\xef\xbe\xd3\xd2"
"\x7d\x2a\xa5\x86\xda\x8d\x58\x73\x4a\x0a\xb2\x2e"
"\xbb\x4c\x7e\xe3\x9a\xb6\x81\xc1",
.entpr_size = 32,
.output =
"\x95\x6f\x95\xfc\x3b\xb7\xfe\x3e\xd0\x4e\x1a\x14"
"\x6c\x34\x7f\x7b\x1d\x0d\x63\x5e\x48\x9c\x69\xe6"
"\x46\x07\xd2\x87\xf3\x86\x52\x3d\x98\x27\x5e\xd7"
"\x54\xe7\x75\x50\x4f\xfb\x4d\xfd\xac\x2f\x4b\x77"
"\xcf\x9e\x8e\xcc\x16\xa2\x24\xcd\x53\xde\x3e\xc5"
"\x55\x5d\xd5\x26\x3f\x89\xdf\xca\x8b\x4e\x1e\xb6"
"\x88\x78\x63\x5c\xa2\x63\x98\x4e\x6f\x25\x59\xb1"
"\x5f\x2b\x23\xb0\x4b\xa5\x18\x5d\xc2\x15\x74\x40"
"\x59\x4c\xb4\x1e\xcf\x9a\x36\xfd\x43\xe2\x03\xb8"
"\x59\x91\x30\x89\x2a\xc8\x5a\x43\x23\x7c\x73\x72"
"\xda\x3f\xad\x2b\xba\x00\x6b\xd1",
.out_size = 128,
.add_a =
"\x18\xe8\x17\xff\xef\x39\xc7\x41\x5c\x73\x03\x03"
"\xf6\x3d\xe8\x5f\xc8\xab\xe4\xab\x0f\xad\xe8\xd6"
"\x86\x88\x55\x28\xc1\x69\xdd\x76",
.add_b =
"\xac\x07\xfc\xbe\x87\x0e\xd3\xea\x1f\x7e\xb8\xe7"
"\x9d\xec\xe8\xe7\xbc\xf3\x18\x25\x77\x35\x4a\xaa"
"\x00\x99\x2a\xdd\x0a\x00\x50\x82",
.add_size = 32,
.pers =
"\xbc\x55\xab\x3c\xf6\x52\xb0\x11\x3d\x7b\x90\xb8"
"\x24\xc9\x26\x4e\x5a\x1e\x77\x0d\x3d\x58\x4a\xda"
"\xd1\x81\xe9\xf8\xeb\x30\x8f\x6f",
.pers_size = 32,
}
}
};
static int __init __must_check
fips_run_test(const struct fips_test *test)
{
int i;
int err;
/*
* If no implementations were specified, then just test the default one.
* Otherwise, test the specified list of implementations.
*/
if (test->impls[0] == NULL) {
err = test->func(test, test->alg);
if (err)
pr_emerg("self-tests failed for algorithm %s: %d\n",
test->alg, err);
return err;
}
for (i = 0; i < ARRAY_SIZE(test->impls) && test->impls[i] != NULL;
i++) {
err = test->func(test, test->impls[i]);
if (err) {
pr_emerg("self-tests failed for algorithm %s, implementation %s: %d\n",
test->alg, test->impls[i], err);
return err;
}
}
return 0;
}
bool __init fips140_run_selftests(void)
{
int i;
pr_info("running self-tests\n");
for (i = 0; i < ARRAY_SIZE(fips140_selftests); i++) {
if (fips_run_test(&fips140_selftests[i]) != 0) {
/* The caller is responsible for calling panic(). */
return false;
}
}
pr_info("all self-tests passed\n");
return true;
}