-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathultrasoundData.py
82 lines (53 loc) · 2.76 KB
/
ultrasoundData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import pickle
import scipy.interpolate
import scipy.misc
from scipy.ndimage.filters import gaussian_filter1d
class UltrasoundData:
def __init__(self, filename):
with open(filename, "rb") as file:
p = pickle.load(file)
#print(p[0])
self.rawImages = p[0]
self.rot, self.trans, self.otime = p[1]
self.otime = np.array(self.otime, dtype=np.float)
self.otime /= 1000
self.rotAngles = np.arctan2(self.rot[:, 2, 0], self.rot[:, 2, 2])
def interpToImageTime(self, array_in_tracker_time):
interpolator = scipy.interpolate.interp1d(self.otime, array_in_tracker_time, assume_sorted=True)
return interpolator(self.rawImages[0]) #rawImages[0] is the timestamp of each ultrasound capture
def makeData(self):
self.monoImages = np.sum(self.rawImages[1], 3).astype(np.float)
self.angles, self.horizontal, self.vertical, self.length = map(self.interpToImageTime,
[self.rotAngles, self.trans[:, 0], self.trans[:, 1], self.trans[:, 2]])
self.rawangles = self.angles.copy()
#self.angles = gaussian_filter1d(self.angles, 6)
self.angles = np.concatenate([self.angles, -self.angles])
self.horizontal = np.concatenate([self.horizontal, -self.horizontal])
self.vertical = np.concatenate([self.vertical, self.vertical])
self.length = np.concatenate([self.length, self.length])
self.data = np.array([scipy.misc.imresize(arr, (100, 100)) for arr in self.monoImages]).reshape(-1, 100, 100, 1) / 255
del self.monoImages
self.data = np.concatenate([self.data, np.flip(self.data, 2)])
#uncomment this to experiment with learning position as well as angle
#self.classes = np.stack([self.angles, self.horizontal / 150, self.vertical/ 150, self.length / 800 - 1]).transpose()
self.classes = np.array([self.angles]).transpose()
"""
uncomment this to experiment with learning angles as a one-hot encoded category instead of as a scalar
self.classes /= 2
self.classes += .5
self.classes *= 15
self.classes = keras.utils.to_categorical(self.classes.astype(np.int), 30)
"""
def stagger(data, classes, n):
"""
Function to create short sequences from a long time series
"""
stagger_data = [
data[i:i + 2 * n + 1]
for i in range(0, len(data) - 2 * n)
]
stagger_classes = classes[n:-n]
stagger_data = np.array([np.concatenate(n) for n in np.array(stagger_data)])
return stagger_data, stagger_classes
x = 9