forked from wang-xinyu/tensorrtx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov4.cpp
689 lines (594 loc) · 32.6 KB
/
yolov4.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#include <fstream>
#include <iostream>
#include <map>
#include <sstream>
#include <vector>
#include <chrono>
#include <opencv2/opencv.hpp>
#include <dirent.h>
#include "NvInfer.h"
#include "utils.h"
#include "cuda_runtime_api.h"
#include "logging.h"
#include "yololayer.h"
#include "mish.h"
#define USE_FP16 // comment out this if want to use FP32
#define DEVICE 0 // GPU id
#define NMS_THRESH 0.4
#define BBOX_CONF_THRESH 0.5
#define BATCH_SIZE 1
using namespace nvinfer1;
// stuff we know about the network and the input/output blobs
static const int INPUT_H = Yolo::INPUT_H;
static const int INPUT_W = Yolo::INPUT_W;
static const int DETECTION_SIZE = sizeof(Yolo::Detection) / sizeof(float);
static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * DETECTION_SIZE + 1; // we assume the yololayer outputs no more than MAX_OUTPUT_BBOX_COUNT boxes that conf >= 0.1
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
static Logger gLogger;
cv::Mat preprocess_img(cv::Mat& img) {
int w, h, x, y;
float r_w = INPUT_W / (img.cols*1.0);
float r_h = INPUT_H / (img.rows*1.0);
if (r_h > r_w) {
w = INPUT_W;
h = r_w * img.rows;
x = 0;
y = (INPUT_H - h) / 2;
} else {
w = r_h* img.cols;
h = INPUT_H;
x = (INPUT_W - w) / 2;
y = 0;
}
cv::Mat re(h, w, CV_8UC3);
cv::resize(img, re, re.size());
cv::Mat out(INPUT_H, INPUT_W, CV_8UC3, cv::Scalar(128, 128, 128));
re.copyTo(out(cv::Rect(x, y, re.cols, re.rows)));
return out;
}
cv::Rect get_rect(cv::Mat& img, float bbox[4]) {
int l, r, t, b;
float r_w = INPUT_W / (img.cols * 1.0);
float r_h = INPUT_H / (img.rows * 1.0);
if (r_h > r_w) {
l = bbox[0] - bbox[2]/2.f;
r = bbox[0] + bbox[2]/2.f;
t = bbox[1] - bbox[3]/2.f - (INPUT_H - r_w * img.rows) / 2;
b = bbox[1] + bbox[3]/2.f - (INPUT_H - r_w * img.rows) / 2;
l = l / r_w;
r = r / r_w;
t = t / r_w;
b = b / r_w;
} else {
l = bbox[0] - bbox[2]/2.f - (INPUT_W - r_h * img.cols) / 2;
r = bbox[0] + bbox[2]/2.f - (INPUT_W - r_h * img.cols) / 2;
t = bbox[1] - bbox[3]/2.f;
b = bbox[1] + bbox[3]/2.f;
l = l / r_h;
r = r / r_h;
t = t / r_h;
b = b / r_h;
}
return cv::Rect(l, t, r-l, b-t);
}
float iou(float lbox[4], float rbox[4]) {
float interBox[] = {
std::max(lbox[0] - lbox[2]/2.f , rbox[0] - rbox[2]/2.f), //left
std::min(lbox[0] + lbox[2]/2.f , rbox[0] + rbox[2]/2.f), //right
std::max(lbox[1] - lbox[3]/2.f , rbox[1] - rbox[3]/2.f), //top
std::min(lbox[1] + lbox[3]/2.f , rbox[1] + rbox[3]/2.f), //bottom
};
if(interBox[2] > interBox[3] || interBox[0] > interBox[1])
return 0.0f;
float interBoxS =(interBox[1]-interBox[0])*(interBox[3]-interBox[2]);
return interBoxS/(lbox[2]*lbox[3] + rbox[2]*rbox[3] -interBoxS);
}
bool cmp(const Yolo::Detection& a, const Yolo::Detection& b) {
return a.det_confidence > b.det_confidence;
}
void nms(std::vector<Yolo::Detection>& res, float *output, float nms_thresh = NMS_THRESH) {
std::map<float, std::vector<Yolo::Detection>> m;
for (int i = 0; i < output[0] && i < Yolo::MAX_OUTPUT_BBOX_COUNT; i++) {
if (output[1 + DETECTION_SIZE * i + 4] <= BBOX_CONF_THRESH) continue;
Yolo::Detection det;
memcpy(&det, &output[1 + DETECTION_SIZE * i], DETECTION_SIZE * sizeof(float));
if (m.count(det.class_id) == 0) m.emplace(det.class_id, std::vector<Yolo::Detection>());
m[det.class_id].push_back(det);
}
for (auto it = m.begin(); it != m.end(); it++) {
//std::cout << it->second[0].class_id << " --- " << std::endl;
auto& dets = it->second;
std::sort(dets.begin(), dets.end(), cmp);
for (size_t m = 0; m < dets.size(); ++m) {
auto& item = dets[m];
res.push_back(item);
for (size_t n = m + 1; n < dets.size(); ++n) {
if (iou(item.bbox, dets[n].bbox) > nms_thresh) {
dets.erase(dets.begin()+n);
--n;
}
}
}
}
}
// TensorRT weight files have a simple space delimited format:
// [type] [size] <data x size in hex>
std::map<std::string, Weights> loadWeights(const std::string file) {
std::cout << "Loading weights: " << file << std::endl;
std::map<std::string, Weights> weightMap;
// Open weights file
std::ifstream input(file);
assert(input.is_open() && "Unable to load weight file.");
// Read number of weight blobs
int32_t count;
input >> count;
assert(count > 0 && "Invalid weight map file.");
while (count--)
{
Weights wt{DataType::kFLOAT, nullptr, 0};
uint32_t size;
// Read name and type of blob
std::string name;
input >> name >> std::dec >> size;
wt.type = DataType::kFLOAT;
// Load blob
uint32_t* val = reinterpret_cast<uint32_t*>(malloc(sizeof(val) * size));
for (uint32_t x = 0, y = size; x < y; ++x)
{
input >> std::hex >> val[x];
}
wt.values = val;
wt.count = size;
weightMap[name] = wt;
}
return weightMap;
}
IScaleLayer* addBatchNorm2d(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, std::string lname, float eps) {
float *gamma = (float*)weightMap[lname + ".weight"].values;
float *beta = (float*)weightMap[lname + ".bias"].values;
float *mean = (float*)weightMap[lname + ".running_mean"].values;
float *var = (float*)weightMap[lname + ".running_var"].values;
int len = weightMap[lname + ".running_var"].count;
float *scval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
scval[i] = gamma[i] / sqrt(var[i] + eps);
}
Weights scale{DataType::kFLOAT, scval, len};
float *shval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
shval[i] = beta[i] - mean[i] * gamma[i] / sqrt(var[i] + eps);
}
Weights shift{DataType::kFLOAT, shval, len};
float *pval = reinterpret_cast<float*>(malloc(sizeof(float) * len));
for (int i = 0; i < len; i++) {
pval[i] = 1.0;
}
Weights power{DataType::kFLOAT, pval, len};
weightMap[lname + ".scale"] = scale;
weightMap[lname + ".shift"] = shift;
weightMap[lname + ".power"] = power;
IScaleLayer* scale_1 = network->addScale(input, ScaleMode::kCHANNEL, shift, scale, power);
assert(scale_1);
return scale_1;
}
ILayer* convBnMish(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, int linx) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap["module_list." + std::to_string(linx) + ".Conv2d.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "module_list." + std::to_string(linx) + ".BatchNorm2d", 1e-4);
auto creator = getPluginRegistry()->getPluginCreator("Mish_TRT", "1");
const PluginFieldCollection* pluginData = creator->getFieldNames();
IPluginV2 *pluginObj = creator->createPlugin(("mish" + std::to_string(linx)).c_str(), pluginData);
ITensor* inputTensors[] = {bn1->getOutput(0)};
auto mish = network->addPluginV2(&inputTensors[0], 1, *pluginObj);
return mish;
}
ILayer* convBnLeaky(INetworkDefinition *network, std::map<std::string, Weights>& weightMap, ITensor& input, int outch, int ksize, int s, int p, int linx) {
Weights emptywts{DataType::kFLOAT, nullptr, 0};
IConvolutionLayer* conv1 = network->addConvolutionNd(input, outch, DimsHW{ksize, ksize}, weightMap["module_list." + std::to_string(linx) + ".Conv2d.weight"], emptywts);
assert(conv1);
conv1->setStrideNd(DimsHW{s, s});
conv1->setPaddingNd(DimsHW{p, p});
IScaleLayer* bn1 = addBatchNorm2d(network, weightMap, *conv1->getOutput(0), "module_list." + std::to_string(linx) + ".BatchNorm2d", 1e-4);
auto lr = network->addActivation(*bn1->getOutput(0), ActivationType::kLEAKY_RELU);
lr->setAlpha(0.1);
return lr;
}
// Creat the engine using only the API and not any parser.
ICudaEngine* createEngine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt) {
INetworkDefinition* network = builder->createNetworkV2(0U);
// Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{3, INPUT_H, INPUT_W});
assert(data);
std::map<std::string, Weights> weightMap = loadWeights("../yolov4.wts");
Weights emptywts{DataType::kFLOAT, nullptr, 0};
// define each layer.
auto l0 = convBnMish(network, weightMap, *data, 32, 3, 1, 1, 0);
auto l1 = convBnMish(network, weightMap, *l0->getOutput(0), 64, 3, 2, 1, 1);
auto l2 = convBnMish(network, weightMap, *l1->getOutput(0), 64, 1, 1, 0, 2);
auto l3 = l1;
auto l4 = convBnMish(network, weightMap, *l3->getOutput(0), 64, 1, 1, 0, 4);
auto l5 = convBnMish(network, weightMap, *l4->getOutput(0), 32, 1, 1, 0, 5);
auto l6 = convBnMish(network, weightMap, *l5->getOutput(0), 64, 3, 1, 1, 6);
auto ew7 = network->addElementWise(*l6->getOutput(0), *l4->getOutput(0), ElementWiseOperation::kSUM);
auto l8 = convBnMish(network, weightMap, *ew7->getOutput(0), 64, 1, 1, 0, 8);
ITensor* inputTensors9[] = {l8->getOutput(0), l2->getOutput(0)};
auto cat9 = network->addConcatenation(inputTensors9, 2);
auto l10 = convBnMish(network, weightMap, *cat9->getOutput(0), 64, 1, 1, 0, 10);
auto l11 = convBnMish(network, weightMap, *l10->getOutput(0), 128, 3, 2, 1, 11);
auto l12 = convBnMish(network, weightMap, *l11->getOutput(0), 64, 1, 1, 0, 12);
auto l13 = l11;
auto l14 = convBnMish(network, weightMap, *l13->getOutput(0), 64, 1, 1, 0, 14);
auto l15 = convBnMish(network, weightMap, *l14->getOutput(0), 64, 1, 1, 0, 15);
auto l16 = convBnMish(network, weightMap, *l15->getOutput(0), 64, 3, 1, 1, 16);
auto ew17 = network->addElementWise(*l16->getOutput(0), *l14->getOutput(0), ElementWiseOperation::kSUM);
auto l18 = convBnMish(network, weightMap, *ew17->getOutput(0), 64, 1, 1, 0, 18);
auto l19 = convBnMish(network, weightMap, *l18->getOutput(0), 64, 3, 1, 1, 19);
auto ew20 = network->addElementWise(*l19->getOutput(0), *ew17->getOutput(0), ElementWiseOperation::kSUM);
auto l21 = convBnMish(network, weightMap, *ew20->getOutput(0), 64, 1, 1, 0, 21);
ITensor* inputTensors22[] = {l21->getOutput(0), l12->getOutput(0)};
auto cat22 = network->addConcatenation(inputTensors22, 2);
auto l23 = convBnMish(network, weightMap, *cat22->getOutput(0), 128, 1, 1, 0, 23);
auto l24 = convBnMish(network, weightMap, *l23->getOutput(0), 256, 3, 2, 1, 24);
auto l25 = convBnMish(network, weightMap, *l24->getOutput(0), 128, 1, 1, 0, 25);
auto l26 = l24;
auto l27 = convBnMish(network, weightMap, *l26->getOutput(0), 128, 1, 1, 0, 27);
auto l28 = convBnMish(network, weightMap, *l27->getOutput(0), 128, 1, 1, 0, 28);
auto l29 = convBnMish(network, weightMap, *l28->getOutput(0), 128, 3, 1, 1, 29);
auto ew30 = network->addElementWise(*l29->getOutput(0), *l27->getOutput(0), ElementWiseOperation::kSUM);
auto l31 = convBnMish(network, weightMap, *ew30->getOutput(0), 128, 1, 1, 0, 31);
auto l32 = convBnMish(network, weightMap, *l31->getOutput(0), 128, 3, 1, 1, 32);
auto ew33 = network->addElementWise(*l32->getOutput(0), *ew30->getOutput(0), ElementWiseOperation::kSUM);
auto l34 = convBnMish(network, weightMap, *ew33->getOutput(0), 128, 1, 1, 0, 34);
auto l35 = convBnMish(network, weightMap, *l34->getOutput(0), 128, 3, 1, 1, 35);
auto ew36 = network->addElementWise(*l35->getOutput(0), *ew33->getOutput(0), ElementWiseOperation::kSUM);
auto l37 = convBnMish(network, weightMap, *ew36->getOutput(0), 128, 1, 1, 0, 37);
auto l38 = convBnMish(network, weightMap, *l37->getOutput(0), 128, 3, 1, 1, 38);
auto ew39 = network->addElementWise(*l38->getOutput(0), *ew36->getOutput(0), ElementWiseOperation::kSUM);
auto l40 = convBnMish(network, weightMap, *ew39->getOutput(0), 128, 1, 1, 0, 40);
auto l41 = convBnMish(network, weightMap, *l40->getOutput(0), 128, 3, 1, 1, 41);
auto ew42 = network->addElementWise(*l41->getOutput(0), *ew39->getOutput(0), ElementWiseOperation::kSUM);
auto l43 = convBnMish(network, weightMap, *ew42->getOutput(0), 128, 1, 1, 0, 43);
auto l44 = convBnMish(network, weightMap, *l43->getOutput(0), 128, 3, 1, 1, 44);
auto ew45 = network->addElementWise(*l44->getOutput(0), *ew42->getOutput(0), ElementWiseOperation::kSUM);
auto l46 = convBnMish(network, weightMap, *ew45->getOutput(0), 128, 1, 1, 0, 46);
auto l47 = convBnMish(network, weightMap, *l46->getOutput(0), 128, 3, 1, 1, 47);
auto ew48 = network->addElementWise(*l47->getOutput(0), *ew45->getOutput(0), ElementWiseOperation::kSUM);
auto l49 = convBnMish(network, weightMap, *ew48->getOutput(0), 128, 1, 1, 0, 49);
auto l50 = convBnMish(network, weightMap, *l49->getOutput(0), 128, 3, 1, 1, 50);
auto ew51 = network->addElementWise(*l50->getOutput(0), *ew48->getOutput(0), ElementWiseOperation::kSUM);
auto l52 = convBnMish(network, weightMap, *ew51->getOutput(0), 128, 1, 1, 0, 52);
ITensor* inputTensors53[] = {l52->getOutput(0), l25->getOutput(0)};
auto cat53 = network->addConcatenation(inputTensors53, 2);
auto l54 = convBnMish(network, weightMap, *cat53->getOutput(0), 256, 1, 1, 0, 54);
auto l55 = convBnMish(network, weightMap, *l54->getOutput(0), 512, 3, 2, 1, 55);
auto l56 = convBnMish(network, weightMap, *l55->getOutput(0), 256, 1, 1, 0, 56);
auto l57 = l55;
auto l58 = convBnMish(network, weightMap, *l57->getOutput(0), 256, 1, 1, 0, 58);
auto l59 = convBnMish(network, weightMap, *l58->getOutput(0), 256, 1, 1, 0, 59);
auto l60 = convBnMish(network, weightMap, *l59->getOutput(0), 256, 3, 1, 1, 60);
auto ew61 = network->addElementWise(*l60->getOutput(0), *l58->getOutput(0), ElementWiseOperation::kSUM);
auto l62 = convBnMish(network, weightMap, *ew61->getOutput(0), 256, 1, 1, 0, 62);
auto l63 = convBnMish(network, weightMap, *l62->getOutput(0), 256, 3, 1, 1, 63);
auto ew64 = network->addElementWise(*l63->getOutput(0), *ew61->getOutput(0), ElementWiseOperation::kSUM);
auto l65 = convBnMish(network, weightMap, *ew64->getOutput(0), 256, 1, 1, 0, 65);
auto l66 = convBnMish(network, weightMap, *l65->getOutput(0), 256, 3, 1, 1, 66);
auto ew67 = network->addElementWise(*l66->getOutput(0), *ew64->getOutput(0), ElementWiseOperation::kSUM);
auto l68 = convBnMish(network, weightMap, *ew67->getOutput(0), 256, 1, 1, 0, 68);
auto l69 = convBnMish(network, weightMap, *l68->getOutput(0), 256, 3, 1, 1, 69);
auto ew70 = network->addElementWise(*l69->getOutput(0), *ew67->getOutput(0), ElementWiseOperation::kSUM);
auto l71 = convBnMish(network, weightMap, *ew70->getOutput(0), 256, 1, 1, 0, 71);
auto l72 = convBnMish(network, weightMap, *l71->getOutput(0), 256, 3, 1, 1, 72);
auto ew73 = network->addElementWise(*l72->getOutput(0), *ew70->getOutput(0), ElementWiseOperation::kSUM);
auto l74 = convBnMish(network, weightMap, *ew73->getOutput(0), 256, 1, 1, 0, 74);
auto l75 = convBnMish(network, weightMap, *l74->getOutput(0), 256, 3, 1, 1, 75);
auto ew76 = network->addElementWise(*l75->getOutput(0), *ew73->getOutput(0), ElementWiseOperation::kSUM);
auto l77 = convBnMish(network, weightMap, *ew76->getOutput(0), 256, 1, 1, 0, 77);
auto l78 = convBnMish(network, weightMap, *l77->getOutput(0), 256, 3, 1, 1, 78);
auto ew79 = network->addElementWise(*l78->getOutput(0), *ew76->getOutput(0), ElementWiseOperation::kSUM);
auto l80 = convBnMish(network, weightMap, *ew79->getOutput(0), 256, 1, 1, 0, 80);
auto l81 = convBnMish(network, weightMap, *l80->getOutput(0), 256, 3, 1, 1, 81);
auto ew82 = network->addElementWise(*l81->getOutput(0), *ew79->getOutput(0), ElementWiseOperation::kSUM);
auto l83 = convBnMish(network, weightMap, *ew82->getOutput(0), 256, 1, 1, 0, 83);
ITensor* inputTensors84[] = {l83->getOutput(0), l56->getOutput(0)};
auto cat84 = network->addConcatenation(inputTensors84, 2);
auto l85 = convBnMish(network, weightMap, *cat84->getOutput(0), 512, 1, 1, 0, 85);
auto l86 = convBnMish(network, weightMap, *l85->getOutput(0), 1024, 3, 2, 1, 86);
auto l87 = convBnMish(network, weightMap, *l86->getOutput(0), 512, 1, 1, 0, 87);
auto l88 = l86;
auto l89 = convBnMish(network, weightMap, *l88->getOutput(0), 512, 1, 1, 0, 89);
auto l90 = convBnMish(network, weightMap, *l89->getOutput(0), 512, 1, 1, 0, 90);
auto l91 = convBnMish(network, weightMap, *l90->getOutput(0), 512, 3, 1, 1, 91);
auto ew92 = network->addElementWise(*l91->getOutput(0), *l89->getOutput(0), ElementWiseOperation::kSUM);
auto l93 = convBnMish(network, weightMap, *ew92->getOutput(0), 512, 1, 1, 0, 93);
auto l94 = convBnMish(network, weightMap, *l93->getOutput(0), 512, 3, 1, 1, 94);
auto ew95 = network->addElementWise(*l94->getOutput(0), *ew92->getOutput(0), ElementWiseOperation::kSUM);
auto l96 = convBnMish(network, weightMap, *ew95->getOutput(0), 512, 1, 1, 0, 96);
auto l97 = convBnMish(network, weightMap, *l96->getOutput(0), 512, 3, 1, 1, 97);
auto ew98 = network->addElementWise(*l97->getOutput(0), *ew95->getOutput(0), ElementWiseOperation::kSUM);
auto l99 = convBnMish(network, weightMap, *ew98->getOutput(0), 512, 1, 1, 0, 99);
auto l100 = convBnMish(network, weightMap, *l99->getOutput(0), 512, 3, 1, 1, 100);
auto ew101 = network->addElementWise(*l100->getOutput(0), *ew98->getOutput(0), ElementWiseOperation::kSUM);
auto l102 = convBnMish(network, weightMap, *ew101->getOutput(0), 512, 1, 1, 0, 102);
ITensor* inputTensors103[] = {l102->getOutput(0), l87->getOutput(0)};
auto cat103 = network->addConcatenation(inputTensors103, 2);
auto l104 = convBnMish(network, weightMap, *cat103->getOutput(0), 1024, 1, 1, 0, 104);
// ---------
auto l105 = convBnLeaky(network, weightMap, *l104->getOutput(0), 512, 1, 1, 0, 105);
auto l106 = convBnLeaky(network, weightMap, *l105->getOutput(0), 1024, 3, 1, 1, 106);
auto l107 = convBnLeaky(network, weightMap, *l106->getOutput(0), 512, 1, 1, 0, 107);
auto pool108 = network->addPoolingNd(*l107->getOutput(0), PoolingType::kMAX, DimsHW{5, 5});
pool108->setPaddingNd(DimsHW{2, 2});
pool108->setStrideNd(DimsHW{1, 1});
auto l109 = l107;
auto pool110 = network->addPoolingNd(*l109->getOutput(0), PoolingType::kMAX, DimsHW{9, 9});
pool110->setPaddingNd(DimsHW{4, 4});
pool110->setStrideNd(DimsHW{1, 1});
auto l111 = l107;
auto pool112 = network->addPoolingNd(*l111->getOutput(0), PoolingType::kMAX, DimsHW{13, 13});
pool112->setPaddingNd(DimsHW{6, 6});
pool112->setStrideNd(DimsHW{1, 1});
ITensor* inputTensors113[] = {pool112->getOutput(0), pool110->getOutput(0), pool108->getOutput(0), l107->getOutput(0)};
auto cat113 = network->addConcatenation(inputTensors113, 4);
auto l114 = convBnLeaky(network, weightMap, *cat113->getOutput(0), 512, 1, 1, 0, 114);
auto l115 = convBnLeaky(network, weightMap, *l114->getOutput(0), 1024, 3, 1, 1, 115);
auto l116 = convBnLeaky(network, weightMap, *l115->getOutput(0), 512, 1, 1, 0, 116);
auto l117 = convBnLeaky(network, weightMap, *l116->getOutput(0), 256, 1, 1, 0, 117);
float *deval = reinterpret_cast<float*>(malloc(sizeof(float) * 256 * 2 * 2));
for (int i = 0; i < 256 * 2 * 2; i++) {
deval[i] = 1.0;
}
Weights deconvwts118{DataType::kFLOAT, deval, 256 * 2 * 2};
IDeconvolutionLayer* deconv118 = network->addDeconvolutionNd(*l117->getOutput(0), 256, DimsHW{2, 2}, deconvwts118, emptywts);
assert(deconv118);
deconv118->setStrideNd(DimsHW{2, 2});
deconv118->setNbGroups(256);
weightMap["deconv118"] = deconvwts118;
auto l119 = l85;
auto l120 = convBnLeaky(network, weightMap, *l119->getOutput(0), 256, 1, 1, 0, 120);
ITensor* inputTensors121[] = {l120->getOutput(0), deconv118->getOutput(0)};
auto cat121 = network->addConcatenation(inputTensors121, 2);
auto l122 = convBnLeaky(network, weightMap, *cat121->getOutput(0), 256, 1, 1, 0, 122);
auto l123 = convBnLeaky(network, weightMap, *l122->getOutput(0), 512, 3, 1, 1, 123);
auto l124 = convBnLeaky(network, weightMap, *l123->getOutput(0), 256, 1, 1, 0, 124);
auto l125 = convBnLeaky(network, weightMap, *l124->getOutput(0), 512, 3, 1, 1, 125);
auto l126 = convBnLeaky(network, weightMap, *l125->getOutput(0), 256, 1, 1, 0, 126);
auto l127 = convBnLeaky(network, weightMap, *l126->getOutput(0), 128, 1, 1, 0, 127);
Weights deconvwts128{DataType::kFLOAT, deval, 128 * 2 * 2};
IDeconvolutionLayer* deconv128 = network->addDeconvolutionNd(*l127->getOutput(0), 128, DimsHW{2, 2}, deconvwts128, emptywts);
assert(deconv128);
deconv128->setStrideNd(DimsHW{2, 2});
deconv128->setNbGroups(128);
auto l129 = l54;
auto l130 = convBnLeaky(network, weightMap, *l129->getOutput(0), 128, 1, 1, 0, 130);
ITensor* inputTensors131[] = {l130->getOutput(0), deconv128->getOutput(0)};
auto cat131 = network->addConcatenation(inputTensors131, 2);
auto l132 = convBnLeaky(network, weightMap, *cat131->getOutput(0), 128, 1, 1, 0, 132);
auto l133 = convBnLeaky(network, weightMap, *l132->getOutput(0), 256, 3, 1, 1, 133);
auto l134 = convBnLeaky(network, weightMap, *l133->getOutput(0), 128, 1, 1, 0, 134);
auto l135 = convBnLeaky(network, weightMap, *l134->getOutput(0), 256, 3, 1, 1, 135);
auto l136 = convBnLeaky(network, weightMap, *l135->getOutput(0), 128, 1, 1, 0, 136);
auto l137 = convBnLeaky(network, weightMap, *l136->getOutput(0), 256, 3, 1, 1, 137);
IConvolutionLayer* conv138 = network->addConvolutionNd(*l137->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{1, 1}, weightMap["module_list.138.Conv2d.weight"], weightMap["module_list.138.Conv2d.bias"]);
assert(conv138);
// 139 is yolo layer
auto l140 = l136;
auto l141 = convBnLeaky(network, weightMap, *l140->getOutput(0), 256, 3, 2, 1, 141);
ITensor* inputTensors142[] = {l141->getOutput(0), l126->getOutput(0)};
auto cat142 = network->addConcatenation(inputTensors142, 2);
auto l143 = convBnLeaky(network, weightMap, *cat142->getOutput(0), 256, 1, 1, 0, 143);
auto l144 = convBnLeaky(network, weightMap, *l143->getOutput(0), 512, 3, 1, 1, 144);
auto l145 = convBnLeaky(network, weightMap, *l144->getOutput(0), 256, 1, 1, 0, 145);
auto l146 = convBnLeaky(network, weightMap, *l145->getOutput(0), 512, 3, 1, 1, 146);
auto l147 = convBnLeaky(network, weightMap, *l146->getOutput(0), 256, 1, 1, 0, 147);
auto l148 = convBnLeaky(network, weightMap, *l147->getOutput(0), 512, 3, 1, 1, 148);
IConvolutionLayer* conv149 = network->addConvolutionNd(*l148->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{1, 1}, weightMap["module_list.149.Conv2d.weight"], weightMap["module_list.149.Conv2d.bias"]);
assert(conv149);
// 150 is yolo layer
auto l151 = l147;
auto l152 = convBnLeaky(network, weightMap, *l151->getOutput(0), 512, 3, 2, 1, 152);
ITensor* inputTensors153[] = {l152->getOutput(0), l116->getOutput(0)};
auto cat153 = network->addConcatenation(inputTensors153, 2);
auto l154 = convBnLeaky(network, weightMap, *cat153->getOutput(0), 512, 1, 1, 0, 154);
auto l155 = convBnLeaky(network, weightMap, *l154->getOutput(0), 1024, 3, 1, 1, 155);
auto l156 = convBnLeaky(network, weightMap, *l155->getOutput(0), 512, 1, 1, 0, 156);
auto l157 = convBnLeaky(network, weightMap, *l156->getOutput(0), 1024, 3, 1, 1, 157);
auto l158 = convBnLeaky(network, weightMap, *l157->getOutput(0), 512, 1, 1, 0, 158);
auto l159 = convBnLeaky(network, weightMap, *l158->getOutput(0), 1024, 3, 1, 1, 159);
IConvolutionLayer* conv160 = network->addConvolutionNd(*l159->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{1, 1}, weightMap["module_list.160.Conv2d.weight"], weightMap["module_list.160.Conv2d.bias"]);
assert(conv160);
// 161 is yolo layer
auto creator = getPluginRegistry()->getPluginCreator("YoloLayer_TRT", "1");
const PluginFieldCollection* pluginData = creator->getFieldNames();
IPluginV2 *pluginObj = creator->createPlugin("yololayer", pluginData);
ITensor* inputTensors_yolo[] = {conv138->getOutput(0), conv149->getOutput(0), conv160->getOutput(0)};
auto yolo = network->addPluginV2(inputTensors_yolo, 3, *pluginObj);
yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME);
network->markOutput(*yolo->getOutput(0));
// Build engine
builder->setMaxBatchSize(maxBatchSize);
config->setMaxWorkspaceSize(16 * (1 << 20)); // 16MB
#ifdef USE_FP16
config->setFlag(BuilderFlag::kFP16);
#endif
std::cout << "Building tensorrt engine, please wait for a while..." << std::endl;
ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
std::cout << "Build engine successfully!" << std::endl;
// Don't need the network any more
network->destroy();
// Release host memory
for (auto& mem : weightMap)
{
free((void*) (mem.second.values));
}
return engine;
}
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine* engine = createEngine(maxBatchSize, builder, config, DataType::kFLOAT);
assert(engine != nullptr);
// Serialize the engine
(*modelStream) = engine->serialize();
// Close everything down
engine->destroy();
builder->destroy();
config->destroy();
}
void doInference(IExecutionContext& context, float* input, float* output, int batchSize) {
const ICudaEngine& engine = context.getEngine();
// Pointers to input and output device buffers to pass to engine.
// Engine requires exactly IEngine::getNbBindings() number of buffers.
assert(engine.getNbBindings() == 2);
void* buffers[2];
// In order to bind the buffers, we need to know the names of the input and output tensors.
// Note that indices are guaranteed to be less than IEngine::getNbBindings()
const int inputIndex = engine.getBindingIndex(INPUT_BLOB_NAME);
const int outputIndex = engine.getBindingIndex(OUTPUT_BLOB_NAME);
// Create GPU buffers on device
CUDA_CHECK(cudaMalloc(&buffers[inputIndex], batchSize * 3 * INPUT_H * INPUT_W * sizeof(float)));
CUDA_CHECK(cudaMalloc(&buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float)));
// Create stream
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
// DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
context.enqueue(batchSize, buffers, stream, nullptr);
CUDA_CHECK(cudaMemcpyAsync(output, buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
cudaStreamSynchronize(stream);
// Release stream and buffers
cudaStreamDestroy(stream);
CUDA_CHECK(cudaFree(buffers[inputIndex]));
CUDA_CHECK(cudaFree(buffers[outputIndex]));
}
int read_files_in_dir(const char *p_dir_name, std::vector<std::string> &file_names) {
DIR *p_dir = opendir(p_dir_name);
if (p_dir == nullptr) {
return -1;
}
struct dirent* p_file = nullptr;
while ((p_file = readdir(p_dir)) != nullptr) {
if (strcmp(p_file->d_name, ".") != 0 &&
strcmp(p_file->d_name, "..") != 0) {
//std::string cur_file_name(p_dir_name);
//cur_file_name += "/";
//cur_file_name += p_file->d_name;
std::string cur_file_name(p_file->d_name);
file_names.push_back(cur_file_name);
}
}
closedir(p_dir);
return 0;
}
int main(int argc, char** argv) {
cudaSetDevice(DEVICE);
// create a model using the API directly and serialize it to a stream
char *trtModelStream{nullptr};
size_t size{0};
if (argc == 2 && std::string(argv[1]) == "-s") {
IHostMemory* modelStream{nullptr};
APIToModel(BATCH_SIZE, &modelStream);
assert(modelStream != nullptr);
std::ofstream p("yolov4.engine", std::ios::binary);
if (!p) {
std::cerr << "could not open plan output file" << std::endl;
return -1;
}
p.write(reinterpret_cast<const char*>(modelStream->data()), modelStream->size());
modelStream->destroy();
return 0;
} else if (argc == 3 && std::string(argv[1]) == "-d") {
std::ifstream file("yolov4.engine", std::ios::binary);
if (file.good()) {
file.seekg(0, file.end);
size = file.tellg();
file.seekg(0, file.beg);
trtModelStream = new char[size];
assert(trtModelStream);
file.read(trtModelStream, size);
file.close();
}
} else {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./yolov4 -s // serialize model to plan file" << std::endl;
std::cerr << "./yolov4 -d ../samples // deserialize plan file and run inference" << std::endl;
return -1;
}
std::vector<std::string> file_names;
if (read_files_in_dir(argv[2], file_names) < 0) {
std::cout << "read_files_in_dir failed." << std::endl;
return -1;
}
// prepare input data ---------------------------
static float data[BATCH_SIZE * 3 * INPUT_H * INPUT_W];
//for (int i = 0; i < 3 * INPUT_H * INPUT_W; i++)
// data[i] = 1.0;
static float prob[BATCH_SIZE * OUTPUT_SIZE];
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
assert(engine != nullptr);
IExecutionContext* context = engine->createExecutionContext();
assert(context != nullptr);
delete[] trtModelStream;
int fcount = 0;
for (int f = 0; f < (int)file_names.size(); f++) {
fcount++;
if (fcount < BATCH_SIZE && f + 1 != (int)file_names.size()) continue;
for (int b = 0; b < fcount; b++) {
cv::Mat img = cv::imread(std::string(argv[2]) + "/" + file_names[f - fcount + 1 + b]);
if (img.empty()) continue;
cv::Mat pr_img = preprocess_img(img);
for (int i = 0; i < INPUT_H * INPUT_W; i++) {
data[b * 3 * INPUT_H * INPUT_W + i] = pr_img.at<cv::Vec3b>(i)[2] / 255.0;
data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = pr_img.at<cv::Vec3b>(i)[1] / 255.0;
data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = pr_img.at<cv::Vec3b>(i)[0] / 255.0;
}
}
// Run inference
auto start = std::chrono::system_clock::now();
doInference(*context, data, prob, BATCH_SIZE);
auto end = std::chrono::system_clock::now();
std::cout << std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count() << "ms" << std::endl;
std::vector<std::vector<Yolo::Detection>> batch_res(fcount);
for (int b = 0; b < fcount; b++) {
auto& res = batch_res[b];
nms(res, &prob[b * OUTPUT_SIZE]);
}
for (int b = 0; b < fcount; b++) {
auto& res = batch_res[b];
//std::cout << res.size() << std::endl;
cv::Mat img = cv::imread(std::string(argv[2]) + "/" + file_names[f - fcount + 1 + b]);
for (size_t j = 0; j < res.size(); j++) {
//float *p = (float*)&res[j];
//for (size_t k = 0; k < 7; k++) {
// std::cout << p[k] << ", ";
//}
//std::cout << std::endl;
cv::Rect r = get_rect(img, res[j].bbox);
cv::rectangle(img, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
cv::putText(img, std::to_string((int)res[j].class_id), cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);
}
cv::imwrite("_" + file_names[f - fcount + 1 + b], img);
}
fcount = 0;
}
// Destroy the engine
context->destroy();
engine->destroy();
runtime->destroy();
//Print histogram of the output distribution
//std::cout << "\nOutput:\n\n";
//for (unsigned int i = 0; i < OUTPUT_SIZE; i++)
//{
// std::cout << prob[i] << ", ";
// if (i % 10 == 0) std::cout << i / 10 << std::endl;
//}
//std::cout << std::endl;
return 0;
}