This repository has been archived by the owner on Jan 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
70 lines (49 loc) · 1.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from PIL import Image
import numpy as np
import matplotlib.pylab as plt
im = Image.open("sample/IMG_8217.jpg")
print(im)
im2arr = np.array(im) # im2arr.shape: height x width x channel
arr2im = Image.fromarray(im2arr)
plt.imshow(im2arr)
plt.show()
print(np.min(im2arr[:,:,2]), np.max(im2arr[:,:,2]))
# substract the minimal colour intensity from each pixel.
# here, but not done yet
x = 860
y = 250
plt.imshow(im2arr[y+50:y+250, x+50:x+250, :])
plt.show()
green_r = np.mean(im2arr[y+50:y+250, x+50:x+250, 0])
green_g = np.mean(im2arr[y+50:y+250, x+50:x+250, 1])
green_b = np.mean(im2arr[y+50:y+250, x+50:x+250, 2])
print("green", green_r, green_g, green_b)
x = 2070
y = 250
plt.imshow(im2arr[y+50:y+250, x+50:x+250, :])
plt.show()
blue_r = np.mean(im2arr[y+50:y+250, x+50:x+250, 0])
blue_g = np.mean(im2arr[y+50:y+250, x+50:x+250, 1])
blue_b = np.mean(im2arr[y+50:y+250, x+50:x+250, 2])
print("blue", blue_r, blue_g, blue_b)
x = 800
y = 1020
plt.imshow(im2arr[y+50:y+250, x+50:x+250, :])
plt.show()
brown_r = np.mean(im2arr[y+50:y+250, x+50:x+250, 0])
brown_g = np.mean(im2arr[y+50:y+250, x+50:x+250, 1])
brown_b = np.mean(im2arr[y+50:y+250, x+50:x+250, 2])
print("brown", brown_r, brown_g, brown_b)
plt.plot([brown_r, brown_g, brown_b])
plt.plot([blue_r, blue_g, blue_b])
plt.plot([green_r, green_g, green_b])
plt.show()
for i in range(len(im2arr)):
for j in range(len(im2arr[i])):
if im2arr[i][j][0] > brown_r - 30 and im2arr[i][j][0] < brown_r + 30 and im2arr[i][j][1] > brown_g - 30 and im2arr[i][j][1] < brown_g + 30 and im2arr[i][j][2] > brown_b - 30 and im2arr[i][j][2] < brown_b + 30:
print(i,j, "brown")
im2arr[i, j, 0] = 0
im2arr[i, j, 1] = 0
im2arr[i, j, 2] = 0
plt.imshow(im2arr)
plt.show()