-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpretrain.py
197 lines (162 loc) · 6.84 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
# limit resource usage
os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = "4" # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = "4" # export NUMEXPR_NUM_THREADS=6
os.environ["GDAL_NUM_THREADS"] = "4"
import random
import wandb
import torch
import numpy as np
from tqdm import tqdm
from src.vit_spatial_spectral import ViTSpatialSpectral
from src.vit_simmim_original import SimMIMSpatialSpectral
from src.utils import get_pretrain_config, get_optimizers, get_unsupervised_data
SEED = 5
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
if __name__ == "__main__":
config = get_pretrain_config(
"configs/pretrain_config.yaml", "configs/config.yaml", SEED, device
)
# create encoder
assert (
config.encoder_name == "ViTSpatialSpectral"
), f"encoder {config.encoder_name} not available"
spectral_pos = torch.arange(config.n_bands // config.band_patch_size)
model = ViTSpatialSpectral(
image_size=config.image_size,
spatial_patch_size=config.patch_size,
spectral_patch_size=config.band_patch_size,
num_classes=config.n_classes,
dim=config.transformer_dim,
depth=config.transformer_depth,
heads=config.transformer_n_heads,
mlp_dim=config.transformer_mlp_dim,
dropout=config.transformer_dropout,
emb_dropout=config.transformer_emb_dropout,
channels=config.n_bands,
spectral_pos_embed=config.spectral_pos_embed,
spectral_pos=spectral_pos,
blockwise_patch_embed=config.blockwise_patch_embed,
spectral_only=config.spectral_only,
)
# wrap encoder for masked pre-training
model = SimMIMSpatialSpectral(
encoder=model,
intermediate_losses=config.mim_intermediate_losses,
masking_ratio=config.mim_masking_ratio,
mask_patch_size=config.mim_mask_patch_size,
to_pixels_per_spectral_block=config.to_pixels_per_spectral_block,
tube_masking=config.tube_masking,
).to(device)
optimizer, scheduler = get_optimizers(model, config)
if config.clip_grad_norm:
for p in model.parameters():
p.register_hook(lambda grad: torch.clamp(grad, -1, 1))
config.model_params = sum([p.numel() for p in model.parameters()])
dataloader, val_dataloader = get_unsupervised_data(config, device)
# set-up training run
run = wandb.init(
project="enmap-mim-spatial-spectral", config=config, save_code=True
)
config.run_id = run.id
wandb.config.update(config)
os.mkdir(f"models/{config.run_id}/")
step = 0
losses = []
epochs_pbar = tqdm(range(config.epoch))
for epoch in epochs_pbar:
epochs_pbar.set_description(f"Epoch {epoch}")
model.train()
train_pbar = tqdm(enumerate(dataloader), total=len(dataloader), leave=False)
for idx, batch in train_pbar:
train_pbar.set_description(f"Training {step:,}")
if config.image_size != 64 and config.dataset in ["dfc", "enmap"]:
# select a image_size**2 patch at random location of the tile
x, y = torch.randint(0, 64 - config.image_size, (2,))
else:
x, y = 0, 0
img = batch["img"][
:, :, x : x + config.image_size, y : y + config.image_size
].to(device)
optimizer.zero_grad()
loss = model(img)
if torch.isnan(loss):
raise ValueError("Loss is NaN")
loss.backward()
optimizer.step()
step += 1
losses.append(loss.detach().item())
if step % config.logging_freq == 0:
wandb.log(
{
"epoch": epoch,
"loss": np.array(losses[-1 * config.logging_freq :]).mean(),
"lr": optimizer.param_groups[0]["lr"],
},
step=step,
)
# log at end of training epoch (to same step as validation stats below)
wandb.log({"epoch": epoch, "loss": loss.item()}, step=step)
if epoch % config.model_save_freq == 0:
# save model checkpoint along with some statistics
stats = {
"losses": torch.tensor(losses),
"config": config,
"model_state_dict": model.state_dict(),
"lr_current": optimizer.param_groups[0]["lr"],
"input": img.detach(),
"transformer_input": img,
}
torch.save(
stats,
f"models/{config.run_id}/model_{config.encoder_name}_ep{epoch}.pth",
)
if epoch == 10 and config.model_save_freq == 1:
config.model_save_freq = 10
if not config.skip_val:
# validation
with torch.no_grad():
val_losses = []
val_accs = []
model.eval()
val_pbar = tqdm(
enumerate(val_dataloader), total=len(val_dataloader), leave=False
)
for idx, batch in val_pbar:
val_pbar.set_description(f"Validation {step:,}")
img_whole = batch["img"]
if config.image_size != 64 and config.dataset in ["dfc", "enmap"]:
# sliding window with stride == window size
for x in range(0, 64, config.image_size):
for y in range(0, 64, config.image_size):
img = img_whole[
:,
:,
x : x + config.image_size,
y : y + config.image_size,
].to(device)
loss = model(img)
val_losses.append(loss.detach().item())
else:
img = img_whole.to(device)
loss = model(img)
val_losses.append(loss.detach().item())
wandb.log(
{
"epoch": epoch,
"val_loss": torch.tensor(val_losses).mean().item(),
},
step=step,
)
if config.scheduler == "ReduceLROnPlateau":
scheduler.step(torch.tensor(val_losses).mean().item())
if config.scheduler == "cosine":
scheduler.step()