-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathmain_mldg.py
55 lines (47 loc) · 2.88 KB
/
main_mldg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
from model import ModelMLDG
def main():
main_arg_parser = argparse.ArgumentParser(description="parser")
subparsers = main_arg_parser.add_subparsers(title="subcommands", dest="subcommand")
train_arg_parser = subparsers.add_parser("train", help="parser for training arguments")
train_arg_parser.add_argument("--test_every", type=int, default=50,
help="number of test every steps")
train_arg_parser.add_argument("--batch_size", type=int, default=128,
help="batch size for training, default is 64")
train_arg_parser.add_argument("--num_classes", type=int, default=10,
help="number of classes")
train_arg_parser.add_argument("--step_size", type=int, default=1,
help="number of classes")
train_arg_parser.add_argument("--inner_loops", type=int, default=200000,
help="number of classes")
train_arg_parser.add_argument("--unseen_index", type=int, default=0,
help="index of unseen domain")
train_arg_parser.add_argument("--lr", type=float, default=0.0001,
help='learning rate of the model')
train_arg_parser.add_argument("--meta_step_size", type=float, default=0.0001,
help='meta step size')
train_arg_parser.add_argument("--meta_val_beta", type=float, default=0.0001,
help='the strength of the meta val loss')
train_arg_parser.add_argument("--weight_decay", type=float, default=0.00005,
help='weight decay')
train_arg_parser.add_argument("--momentum", type=float, default=0.9,
help='momentum')
train_arg_parser.add_argument("--logs", type=str, default='logs/',
help='logs folder to write log')
train_arg_parser.add_argument("--model_path", type=str, default='',
help='folder for saving model')
train_arg_parser.add_argument("--state_dict", type=str, default='',
help='model of pre trained')
train_arg_parser.add_argument("--data_root", type=str, default='',
help='folder root of the data')
train_arg_parser.add_argument("--stop_gradient", type=bool, default=False,
help='whether stop gradient of the first order gradient')
train_arg_parser.add_argument("--debug", type=bool, default=False,
help='whether for debug mode or not')
args = main_arg_parser.parse_args()
model_obj = ModelMLDG(flags=args)
model_obj.train(flags=args)
# after training, we should test the held out domain
model_obj.heldout_test(flags=args)
if __name__ == "__main__":
main()