-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlenstra_ecm.py
143 lines (121 loc) · 4.01 KB
/
lenstra_ecm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from gmpy2 import mpz, gcd, ceil, sqrt
from math import log
from primesieve import primes
from random import randint
from bisect import bisect_left, bisect_right
from montgomery_xz import *
"""
From GMP ECM, but maybe doesn't apply
here...
https://gitlab.inria.fr/zimmerma/ecm/
In the form:
digits : [B1, num_curves]
"""
OPTIMAL_PARAMETERS = {
20 : [11000, 74],
25 : [50000, 221],
30 : [250000, 453],
35 : [1000000, 984],
40 : [3000000, 2541],
45 : [11000000, 4949],
50 : [43000000, 8266],
55 : [110000000, 20158],
60 : [260000000, 47173],
65 : [850000000, 77666]
}
def find_curve(N):
"""
Pomerance "Prime Numbers"
Theorem 7.4.3 (ECM curve construction)
Using a random seed, sigma
find a Mont. curve:
y^2 = x (x^2 + Ax + 1)
With a point (maybe on the twist)
(X : Z) = (u^3, v^3)
"""
sigma = randint(6, N-1)
u = (sigma**2 - 5) % N
v = (4 * sigma) % N
A = (v - u)**3 * (3*u + v) * pow(4*u**3*v, -1, N) - 2
A = A % N
A24 = (A + 2) * pow(4, -1, N) % N
return (N, A, A24), (u**3 % N, v**3 % N)
def lenstra_ecm(N, factor_digits=20):
"""
Pomerance "Prime Numbers"
Algorithm 7.4.4 (Inversionless ECM)
B1 bounds taken from GMP-ECM
B2 bounds taken by Pomerance (100*B1)
D memory bound guessed at sqrt(B2) ??
"""
B1, num_curves = OPTIMAL_PARAMETERS[factor_digits]
B2 = 100*B1
# Not sure how to pick this.
# Pomerance's guidance is D = 100
# Other impl use sqrt of B2
D = int(sqrt(B2))
# Sieve for primes smaller than B2 + 2*D
primes_under_B2 = primes(B2 + 2*D)
# Use this to also grab primes smaller than B1
primes_under_B1 = primes_under_B2[:bisect_right(primes_under_B2, B1)]
# Precompute prime powers for stage 1
# Used to make the power smooth integer
# k = Π p_i**a_i; Q = [k]Q
stage_one_prime_powers = []
for pi in primes_under_B1:
# pi**ai <= B1 < pi**(ai+1)
ai = int(log(B1, pi))
stage_one_prime_powers.append(pi**ai)
# Precompute prime windows for stage 2
stage_two_primes = {}
for r in range(B1 - 1, B2, 2*D):
r_lower_bound = r + 2
r_upper_bound = r + 2*D
stage_two_primes[r] = primes_under_B2[bisect_left(primes_under_B2, r_lower_bound):bisect_right(primes_under_B2, r_upper_bound)]
for _ in range(num_curves):
# Stage One
# Multiply the found point Q by a
# B1 power-smooth integer
E, Q = find_curve(N)
for pa in stage_one_prime_powers:
"""
Here we differ from Pomerance by computing
a single inversion at each step, which allows
us to save 1 multiplication in each xDBLADD
which means we save ~log_2(B1) mul for each xMUL
As long as inversion is less that 14 Mul, we save
time!
"""
QX, QZ = xMUL_normalised(Q, pa, E)
try:
QZ_inv = pow(QZ, -1, N)
except:
# We got lucky and found a factor!
return gcd(QZ, N)
Q = (QX * QZ_inv % N, 1)
# Stage Two
# Let's look for a factor B1 < p < B2
S1 = xDBL(Q, E)
S2 = xDBL(S1, E)
β1 = (S1[0] * S1[1]) % N
β2 = (S2[0] * S2[1]) % N
# Pomerance uses index one notation...
Sd = [None, S1, S2]
βd = [None, β1, β2]
for d in range(3, D+1):
S = xADD(Sd[d-1], Sd[1], Sd[d-2], E)
Sd.append(S)
βd.append((S[0] * S[1]) % N)
g, B = 1, B1 - 1
T = xMUL(Q, B - 2*D, E)
R = xMUL(Q, B, E)
# Dict values taken from range(B, B2, 2*D)
for r in stage_two_primes:
α = (R[0] * R[1] % N)
for q in stage_two_primes[r]:
δ = (q - r) // 2
g = g*((R[0] - Sd[δ][0])*(R[1] + Sd[δ][1]) - α + βd[δ]) % N
R, T = xADD(R, Sd[D], T, E), R
g = gcd(g, N)
if 1 < g < N: return g
return 0