-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
351 lines (305 loc) · 14.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#!/usr/bin/env python
# _*_ coding:utf-8 _*_
__author__ = 'syc'
# This is a sample Python script.
# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
import os
from osgeo import ogr, gdal
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pymc as pm
from osgeo import ogr
import GetRasterEnt as GRE
import PointMethod
import threading
import attributeSampling
global PATH,RAW_DATA,FACTORS_PATH,MC_PATH,NEMEROW_PATH,PCDW_2000,HUNAN,MC_SHP,MC_ATTRIBUTE,HQ_CR
PATH=r'E:\syc\MCS_GDM_Master'
RAW_DATA=PATH+r"\Raw shp"
FACTORS_PATH=PATH+r"\influence factors"
MC_PATH=PATH+r"\Monte Carlo output"
#Nemerow data
NEMEROW_PATH=PATH+r"\Nemerow1000"
#采样点数据
PCDW_2000=RAW_DATA+r'\12PCDW_2000.shp'
HUNAN=RAW_DATA+r"\hunan_prj.shp"
MC_SHP=MC_PATH+r"\shp"
#健康风险指数数据
MC_ATTRIBUTE=MC_PATH+r"\Trace_npy"
HQ_CR=MC_PATH+r"\HQ_CR"
def print_hi(name):
# Use a breakpoint in the code line below to debug your script.
print("Hi, {0}".format(name)) # Press Ctrl+F8 to toggle the breakpoint.
#HQ、CR出图
def show_cdf(npy_value):
#HQ_CR_npy
HQ_CR= np.load(npy_value)
FieldData=[]#5*4个属性字段
for j in range(8,len(HQ_CR[0]),12):
k=j
for k in range(j,j+4):
FeaData=[]#48811各要素
for i in range(len(HQ_CR)):
FeaData.append(HQ_CR[i][k]*10**3)
#print(FeaData)
FieldData.append(FeaData)
FieldData=np.array(FieldData)
#FieldData:['Cr','Cd','As','Pb','Hg']>['HI_A','HI_K','TRC_A','TRC_K']共20个字段
#plot.subplots_adjust(left=0,top=1)
for i0 in range(10,len(FieldData),4):
plot=plt.figure()
ax1 = plot.add_subplot(1,1,1)
#计算各元素HI、CR时取消注释
#TransField_A=FieldData[i0].reshape(-1)
#计算THI时取消注释
#TransField_A=FieldData[0].reshape(-1)+FieldData[4].reshape(-1)+FieldData[8].reshape(-1)+FieldData[12].reshape(-1)+FieldData[16].reshape(-1)
#计算TCR时取消注释
TransField_A=FieldData[2].reshape(-1)+FieldData[6].reshape(-1)+FieldData[10].reshape(-1)#TCR
denominator_A=len(TransField_A)#分母数量
Data_A=pd.Series(TransField_A)#将数据转换为Series利用分组频数计算
Fre_A=Data_A.value_counts()
Fre_sort_A=Fre_A.sort_index(axis=0,ascending=True)
#print(Fre_sort_A)
Fre_df_A=Fre_sort_A.reset_index()#将Series数据转换为DataFrame
Fre_df_A[0]=Fre_df_A[0]/denominator_A#转换成概率
Fre_df_A.columns=['Rds','Fre']
#Cr HI(index 0):-2,Cr CR(index 2):1,Cd HI(4):-1, Cd CR(index 6):3,As HI(8):-3,As CR(10):2,Pb HI(12):-2,Pb 无TCR(14),Hg HI(16):-1,THI:-3,TCR:1
Fre_df_A['Rds']=Fre_df_A['Rds']*10**1
#Cd HQ(4):25,Cd TCR(index 6):10,Cr HQ(0):25,Cr CR(index 2):5,As HI(8):10,As TCR(10):40,Pb HQ:10,Hg HI(16):10,HI:10,TCR:10
x_max=10
#Cd HQ(4):1,Cd TCR(index 6):1,Cr HQ:1,Cr CR(index 2):0.4,As HI(8):0.2,As TCR(10):4,Pb HQ:0.3,Hg HI(16):0.4,HI:0.25,TCR:0.7
a_Alocation=0.7
#Cd HQ(4):10,Cd TCR(index 6):2,Cr HQ:8,Cr CR(index 2):0.8,As HI(8):3,As TCR(10):10,Pb (12)HQ:2.5,Hg HI(16):3,HI:4,TCR:3
a_Klocation=3
#Cd HQ(4):15,Cd TCR(index 6):6,Cr HQ:15,Cr CR(index 2):3,As HI(8):7,As TCR(10):25,Pb HQ:7,Hg HI(16):7,HI:7,TCR:6
p_location=6
a_A=np.mean(Fre_df_A['Rds'])
plt.text(a_Alocation,0.6,round(a_A,2) , fontdict = {
'family': 'Calibri', # 标注文本字体
'fontsize': 12, # 文本大小
'color': 'blue', # 文本颜色
})
Fre_df_A['cumsum']=np.cumsum(Fre_df_A['Fre'])
ax1.axvline(x=a_A,color="blue",linestyle ="--")
ax1.plot(Fre_df_A['Rds'],Fre_df_A['cumsum'],label='Adult')
#计算各元素HI、CR时取消注释
# TransField_K=FieldData[i0+1].reshape(-1)
#计算THI时取消注释
#TransField_K=FieldData[0+1].reshape(-1)+FieldData[4+1].reshape(-1)+FieldData[8+1].reshape(-1)+FieldData[12+1].reshape(-1)+FieldData[16+1].reshape(-1)
#计算TCR时取消注释
TransField_K=FieldData[2+1].reshape(-1)+FieldData[6+1].reshape(-1)+FieldData[10+1].reshape(-1)
denominator_K=len(TransField_K)
Data_K=pd.Series(TransField_K)
Fre_K=Data_K.value_counts()
Fre_sort_K=Fre_K.sort_index(axis=0,ascending=True)
#print(Fre_sort_K)
Fre_df_K=Fre_sort_K.reset_index()
Fre_df_K[0]=Fre_df_K[0]/denominator_K
#Cr HI(index 0):-2,Cr CR(index 2):1,Cd HI(4):-1,Cd CR(index 6):3,As HI(8):-3,As TCR(10):2,,Pb HI(12):-2,Hg HI(16):-1,THI:-3,TCR:1
Fre_df_K['Rds']=Fre_df_K['Rds']*10**1
a_K=np.mean(Fre_df_K['Rds'])
print("mean_A:",a_A)
print("mean_K:",a_K)
plt.text(a_Klocation, 0.6,round(a_K,2) , fontdict = {
'family': 'Calibri', # 标注文本字体
'fontsize': 12, # 文本大小
'color': 'orange', # 文本颜色
})
Fre_df_K['cumsum']=np.cumsum(Fre_df_K['Fre'])
ax1.axvline(x=a_K,color="orange",linestyle ="--")
ax1.plot(Fre_df_K['Rds'],Fre_df_K['cumsum'],label='Kids')
ax1.set_title("CDF")
ax1.set_ylabel("P")
ax1.set_xlim(0,x_max)
ax1.legend(loc='upper right') #显示图例,plt.legend()
#每4个字段绘制一次HI
if (i0//2%2)==0:
print(Fre_df_A.loc[Fre_df_A['Rds'] < 1.0*10**0,'cumsum'])
p=max(Fre_df_A.loc[Fre_df_A['Rds'] < 1.0*10**0,'cumsum'])#Cr HI(index 0):1,Cd HQ(4):2,Cd TCR(index 6):6,As HI(8):0,As TCR(10):5,Pb HI(12):1,Hg HI(16):2,HI:0
p0=max(Fre_df_K.loc[Fre_df_K['Rds'] < 1.0*10**0,'cumsum'])
plt.text(p_location, 0.2,'Adults: ({}%>1)'.format(round(1-p,2)*100) , fontdict = {
'family': 'Calibri',
'fontsize': 12,
'color': 'blue',
})
plt.text(p_location, 0.1,'Kids: ({}%>1)'.format(round(1-p0,2)*100) , fontdict = {
'fontsize': 12,
'color': 'orange',
})
#Cr HI(index 0):-1,Cd HI(4):E-2,As HI(8):无 ,Pb HI(12):E-1,Hg HI(16):E-2,HI:0
ax1.set_xlabel("HI")
plt.show()
plot.savefig(r'E:\syc\soil\HI_new\HI.png')
else:
#判断CR是否小于10**-4标准(10的-4需对应缩放)
x0=Fre_df_A.loc[Fre_df_A['Rds'] < 1.0*10**0]
#Cr CR(index 2):-2,Cd CR(index 6):0,As HI(8):-6,,As TCR(10):-1,Pb HI(12):-5,TCR:-2#10**-6标准
x1=Fre_df_A.loc[Fre_df_A['Rds'] < 1.0*10**-2]
if len(x1) != 0:
p0=max(Fre_df_A.loc[Fre_df_A['Rds'] < 1.0*10**0,'cumsum'])
print('Adults: ({}%>10E-4)'.format(round(1-p0,2)*100))
p1=max(Fre_df_A.loc[Fre_df_A['Rds'] < 1.0*10**-2,'cumsum'])
plt.text(p_location, 0.2,'Adults: ({}%>10E-6)'.format(round(1-p1,2)*100) , fontdict = {
'family': 'Calibri',
'fontsize': 12,
'color': 'blue',
})
#全部大于10-6的标准,则关注大于10-4的概率
else:
if len(x0)!=0:
p0=max(Fre_df_A.loc[Fre_df_A['Rds'] < 1.0*10**0,'cumsum'])
print('Adults: ({}%>10E-4)'.format(round(1-p0,2)*100))
plt.text(p_location, 0.2,'Adults: (100.00%>10E-6)', fontdict = {
'family': 'Calibri',
'fontsize': 12,
'color': 'blue',
})
x0=Fre_df_K.loc[Fre_df_K['Rds'] < 1.0*10**0]
#Cr CR(index 2):-2,Cd CR(index 6):0,,As HI(8):-6,,As TCR(10):-1,,Pb HI(12):-5,TCR:-2
x1=Fre_df_K.loc[Fre_df_K['Rds'] < 1.0*10**-2]
if len(x1) != 0:
p0=max(Fre_df_K.loc[Fre_df_K['Rds'] < 1.0*10**0,'cumsum'])
p1=max(Fre_df_K.loc[Fre_df_K['Rds'] < 1.0*10**-2,'cumsum'])
print('Kids: ({}%>10E-4)'.format(round(1-p0,2)*100))
plt.text(p_location, 0.1,'Kids: ({}%>10E-6)'.format(round(1-p1,2)*100) , fontdict = {
'family': 'Calibri',
'fontsize': 12,
'color': 'orange',
})
else:
if len(x0)!=0:
p0=max(Fre_df_K.loc[Fre_df_K['Rds'] < 1.0*10**0,'cumsum'])
print('Kids: ({}%>10E-4)'.format(round(1-p0,2)*100))
plt.text(p_location, 0.1,'Kids: (100.00%>10E-6)' , fontdict = {
'family': 'Calibri',
'fontsize': 12,
'color': 'orange',
})
#Cr CR(index 2):E-4,Cd CR:E-6,As CR(10):E-5,TCR:E-4 每出一张图需对应更改为下一标注
ax1.set_xlabel("TCR(E-4)")
plt.show()
plot.savefig(r'E:\syc\soil\HI_new\TCR.png')
# Press the green button in the gutter to run the script.
if __name__ == '__main__':
print_hi('PyCharm')
FIELD_NAME_ARR =[u"土壤Cr",u"土壤Pb",u"土壤Cd",u"土壤As",u"土壤Hg",u"土壤pH"]
#Raster data
RASTER_NAME=['NemerowRec']
# 生成采样点模拟数据
PointMethod.Point_Method([PCDW_2000],["12PCDW_T"],MC_SHP)
#生成属性模拟数据
SIGMA_ARR = [0.2,0.2,0.2,0.2,0.2,0.02]
attributeSampling.main(PCDW_2000,MC_ATTRIBUTE, FIELD_NAME_ARR, SIGMA_ARR)
#计算内梅罗指数后
attributeSampling.calNemerow(MC_SHP, '12PCDW_T','GB15816')
#IDW插值生成内梅洛指数栅格图
attributeSampling.IDWInter(MC_SHP+r"\12PCDW_T", NEMEROW_PATH, ["Nemerow"], ['Nemerow'])
# 在插值结果进行重分类后计算信息熵
GRE.EntMethod(NEMEROW_PATH,RASTER_NAME)
#按掩膜提取Ent结果
attributeSampling.ExtractMask(NEMEROW_PATH, HUNAN,NEMEROW_PATH, ["NemerowRec"])
#模拟健康风险指数变量
#BW
BW_Anpy=HQ_CR+r"\BW_A.npy"
BW_Knpy=HQ_CR+r"\BW_K.npy"
if os.path.exists(BW_Anpy)==False:
BW_ATrace=attributeSampling.LognormalSample(60.1,12.1)
print(BW_ATrace)
BW_KTrace=attributeSampling.LognormalSample(19.3,3.2)
print(BW_KTrace)
np.save(BW_Anpy, BW_ATrace)
np.save(BW_Knpy, BW_KTrace)
BW_ATrace = np.load(BW_Anpy)
BW_KTrace = np.load(BW_Knpy)
print('BW_A:')
print("负数:",BW_ATrace[BW_ATrace<0])
print("负数:",BW_KTrace[BW_KTrace<0])
print('第50分位数:{}'.format(np.percentile(BW_ATrace,50)))
print('第95分位数:{}'.format(np.percentile(BW_ATrace,95)))
print('BW_K:')
print('第50分位数:{}'.format(np.percentile(BW_KTrace,50)))
print('第95分位数:{}'.format(np.percentile(BW_KTrace,95)))
#ED
ED_Anpy=HQ_CR+r"\ED_A.npy"
ED_Knpy=HQ_CR+r"\ED_K.npy"
if os.path.exists(ED_Anpy)==False:
ED_ATrace=attributeSampling.UniformSample(19,44)
ED_KTrace=attributeSampling.UniformSample(5,6)
print(ED_ATrace)
print(ED_KTrace)
np.save(ED_Anpy, ED_ATrace)
np.save(ED_Knpy, ED_KTrace)
ED_ATrace = np.load(ED_Anpy)
ED_KTrace = np.load(ED_Knpy)
# print('ED_A:')
# print('第50分位数:{}'.format(np.percentile(ED_ATrace,50)))
# print('第95分位数:{}'.format(np.percentile(ED_ATrace,95)))
# print('ED_K:')
# print('第50分位数:{}'.format(np.percentile(ED_KTrace,50)))
# print('第95分位数:{}'.format(np.percentile(ED_KTrace,95)))
#IR
IRs_Anpy=HQ_CR+r"\IRs_A.npy"
IRs_Knpy=HQ_CR+r"\IRs_K.npy"
if os.path.exists(IRs_Anpy)==False:
IRs_ATrace=attributeSampling.LognormalSample(50,76.5)
IRs_KTrace=attributeSampling.LognormalSample(78,110.7)
print(IRs_ATrace)
print(IRs_KTrace)
# print(IRd_ATrace)
# print(IRd_KTrace)
np.save(IRs_Anpy, IRs_ATrace)
np.save(IRs_Knpy, IRs_KTrace)
IRs_ATrace = np.load(IRs_Anpy)
IRs_KTrace = np.load(IRs_Knpy)
print('IRs_A:')
print('第50分位数:{}'.format(np.percentile(IRs_ATrace,50)))
print('第95分位数:{}'.format(np.percentile(IRs_ATrace,95)))
print('IRs_K:')
print('第50分位数:{}'.format(np.percentile(IRs_KTrace,50)))
print('第95分位数:{}'.format(np.percentile(IRs_KTrace,95)))
#SA
SA_Anpy=HQ_CR+r"\SA_A.npy"
SA_Knpy=HQ_CR+r"\SA_K.npy"
if os.path.exists(SA_Anpy)==False:
SA_KTrace=attributeSampling.SA_LognormalSample(8000,765.3)
SA_ATrace=attributeSampling.SA_LognormalSample(16000,1530.6)
print(SA_ATrace)
print(SA_KTrace)
np.save(SA_Anpy, SA_ATrace)
np.save(SA_Knpy, SA_KTrace)
SA_ATrace = np.load(SA_Anpy)
SA_KTrace = np.load(SA_Knpy)
print('SA_A:')
print("负数:",SA_ATrace[SA_ATrace<0])
print("负数:",SA_KTrace[SA_KTrace<0])
print('第50分位数:{}'.format(np.percentile(SA_ATrace,50)))
print('第95分位数:{}'.format(np.percentile(SA_ATrace,95)))
print('SA_K:')
print('第50分位数:{}'.format(np.percentile(SA_KTrace,50)))
print('第95分位数:{}'.format(np.percentile(SA_KTrace,95)))
#AF
AF_Anpy=HQ_CR+r"\AF_A.npy"
AF_Knpy=HQ_CR+r"\AF_K.npy"
if os.path.exists(AF_Anpy)==False:
AF_KTrace=attributeSampling.BetaSample(60,240)
AF_ATrace=attributeSampling.BetaSample(70,930)
print(AF_ATrace)
print(AF_KTrace)
np.save(AF_Anpy, AF_ATrace)
np.save(AF_Knpy, AF_KTrace)
AF_ATrace = np.load(AF_Anpy)
AF_KTrace = np.load(AF_Knpy)
print('AF_A:')
print('第50分位数:{}'.format(np.percentile(AF_ATrace,50)))
print('第95分位数:{}'.format(np.percentile(AF_ATrace,95)))
print('AF_K:')
print('第50分位数:{}'.format(np.percentile(AF_KTrace,50)))
print('第95分位数:{}'.format(np.percentile(AF_KTrace,95)))
#计算各健康风险指数
attributeSampling.CalHI_CR(MC_SHP+r"\12PCDW_T",'12PCDW_T',BW_ATrace,BW_KTrace,ED_ATrace,ED_KTrace,IRs_ATrace,IRs_KTrace,SA_ATrace,SA_KTrace,AF_ATrace,AF_KTrace)
#各风险指数出图
show_cdf(HQ_CR+r"\HQ_CR_2.npy")
#各影响因子栅格转GDM输入数据csv,输入至R语言代码运行GDM
#步骤:1、创建一个渔网后ExtractMultiValuesToPoints.CopyFeature,,2、多值提取至点ExtractMultiValuesToPoints.ExtractMultiValuesToPoints,3、属性表导出为csv。arcpy、arcgis批量操作Export_ShpFieldValueToTxt.py,4、运行R代码