-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRaster.py
243 lines (196 loc) · 9.6 KB
/
Raster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from genericpath import exists
from matplotlib.pyplot import step
from osgeo import ogr
import numpy
from osgeo import gdal, gdalconst
import sys
import math
import numpy as np
import numpy.ma as ma
import pymc as pm
import GetRasterEnt
import os
import attributeSampling as AS
np.set_printoptions(suppress=True)
def GetRasterValue(inputRaster,RasterName,RasterPoint):
Data,geotransform,rows,cols,inputPrj,inputTrans =GetRasterEnt.GetRasterValue(inputRaster)
print('proj',inputPrj)
originX = geotransform[0]#影像左上角横坐标
originY = geotransform[3]#
print('originX',originX)
print('originY', originY)
pixelWidth = geotransform[1]#遥感图像的垂直空间分辨率或者南北方向上的像素分辨率
pixelHeight = geotransform[5]#遥感图像的垂直空间分辨率
centrolX = originX + pixelWidth / 2
centrolY = originY + pixelHeight / 2
print('Data:', Data)
print('inshp:', RasterPoint)
driver = ogr.GetDriverByName('ESRI Shapefile')
ds_shp = driver.Open(RasterPoint)
lyr = ds_shp.GetLayer(0)
Feacount = lyr.GetFeatureCount()
RasterValue_arr = [[None for j in range(cols)] for i in range(rows)]
PointX_arr = [[None for j in range(cols)] for i in range(rows)]
PointY_arr = [[None for j in range(cols)] for i in range(rows)]
for i in range(Feacount):
fea = lyr.GetFeature(i)
feat_geom = fea.GetGeometryRef()
geomX=feat_geom.GetX()
geomY = feat_geom.GetY()
#print("geomX:",geomX)
#print("geomY:", geomY)
field_index = fea.GetFieldIndex(RasterName)
Value_j = fea.GetField(field_index)
xOffset=int((geomX-centrolX)/pixelWidth)#列偏移数
yOffset=int((geomY-centrolY)/pixelHeight)#行偏移数
#print("xOffset:",xOffset)
#print("yOffset:", yOffset)
#栅格单元类别值
RasterValue_arr[yOffset-1][xOffset-1]=Value_j
#用于计算两单元距离
PointX_arr[yOffset-1][xOffset-1] = geomX
PointY_arr[yOffset-1][xOffset-1] = geomY
print("len(RasterValue_arr)",len(RasterValue_arr))
Raster_ValueNeighbor=[[None for j in range(cols)] for i in range(rows)]#每个像元点的邻域集合。将邻域数组按像元行列排列加入
Raster_ArcDistanceNeighbor = [[None for j in range(cols)] for i in range(rows)]#对应的邻域像元与中心像元的反距离
for i in range(len(PointX_arr)):
for j in range(len(PointX_arr[i])):
Value_neighbor = []
Arcdistance_neighbor = []
if (PointX_arr[i][j] is not None and PointX_arr[i][j]>0):
target_X = PointX_arr[i][j]
target_Y = PointY_arr[i][j]
neighborStart_X = PointX_arr[i-2][j-2]
neighborStart_Y = PointY_arr[i-2][j-2]
#获取邻域起止行列号
neighborStart_row=i-2
neighborStart_col = j - 2
for k in range(5):
neighbor_row = neighborStart_row + k
for l in range(5):
neighbor_col = neighborStart_col + l
#print("neighbor_row:",neighbor_row)
#print("neighbor_col:", neighbor_col)
#若超出了栅格边界,continue
if (neighbor_row <0 or neighbor_row>=rows or neighbor_col<0 or neighbor_col>=cols):
continue
elif (RasterValue_arr[neighbor_row][neighbor_col] is not None and RasterValue_arr[neighbor_row][neighbor_col] >0):
value_l = RasterValue_arr[neighbor_row][neighbor_col]
Value_neighbor.append(value_l)
neighbor_X= PointX_arr[neighbor_row][neighbor_col]
neighbor_Y = PointX_arr[neighbor_row][neighbor_col]
#获取每个邻域像元与中心像元的反距离
ArcDistance_l=1/(math.sqrt((target_X - neighbor_X)**2+(target_Y - neighbor_Y)**2)+1)
Arcdistance_neighbor.append(ArcDistance_l)
#print('len(Value_neighbor)',len(Value_neighbor))
Raster_ValueNeighbor[i][j]=Value_neighbor
Raster_ArcDistanceNeighbor[i][j]=Arcdistance_neighbor
return rows,cols,RasterValue_arr,Raster_ValueNeighbor,Raster_ArcDistanceNeighbor,inputPrj,inputTrans
def getClassW(rows,cols,RasterValue_arr,Raster_ValueNeighbor,Raster_ArcDistanceNeighbor):
Raster_WeightNeighbor=[[None for j in range(cols)] for i in range(rows)]#创建同样行列数的
Raster_newClass = [[None for j in range(cols)] for i in range(rows)]
for i in range(len(RasterValue_arr)):
for j in range(len(RasterValue_arr[i])):
W_neighbor=[]
#计算反距离权重
Arcdistance_totle=sum(Raster_ArcDistanceNeighbor[i][j])
for k in range(len(Raster_ArcDistanceNeighbor[i][j])):
if (Raster_ArcDistanceNeighbor[i][j][k] is not None):
W_j=Raster_ArcDistanceNeighbor[i][j][k]/Arcdistance_totle
#print("W_j:",W_j)
W_neighbor.append(W_j)
Raster_WeightNeighbor[i][j]=W_neighbor
for i in range(len(RasterValue_arr)):
for j in range(len(RasterValue_arr[i])):
#邻域内类别value去重
NeighborClassArr = list(set(Raster_ValueNeighbor[i][j]))
#创建字典类别:权重
Class_Weight={x: {} for x in NeighborClassArr}
for Class in NeighborClassArr:
Weight=0
for k in range(len(Raster_ValueNeighbor[i][j])):
if (Raster_ValueNeighbor[i][j] is not None):
if Raster_ValueNeighbor[i][j][k]==Class:
#print("Raster_WeightNeighbor[i][j][k]",Raster_WeightNeighbor[i][j][k])
Weight=round (Weight+Raster_WeightNeighbor[i][j][k],4)
Class_Weight[Class]=Weight
if (len(NeighborClassArr)>1):
print("ClassWeight:",Class_Weight)
#模拟新栅格类别数据
newClass=[None for n in range(100)]
if (len(NeighborClassArr)==1):
for n1 in range(100):
newClass[n1]=NeighborClassArr[0]
#print(newClass)
Raster_newClass[i][j]=newClass#trace
print("newclass:", newClass)
elif (NeighborClassArr==[]):
for n2 in range(100):
newClass[n2]=None
#print(newClass)
Raster_newClass[i][j]=newClass # trace
print("newclass:",newClass)
else:
print("i{},j{}".format(i,j))
trace_npy=r'E:\syc\myshengtai_soil\soilTest\Trace_npy\grid{}{}.npy'.format(i,j)
newClass=BuildModel_U(Class_Weight)
Raster_newClass[i][j]=newClass
return Raster_newClass
def BuildModel_U(ClassWeight):
U=pm.Uniform('U', lower=0, upper=1)
model = pm.Model([U])
runner = pm.MCMC(model)
# 进行10000次抽样,取后5000次
runner.sample(iter=5000, burn=2000)
UTrace = runner.trace("U")[:]
#print("UTrace",UTrace)
newTrace=[]
for i in range(100):
maxNum=0
minNum=0
#设置均匀分布,各类别所占比例区间
for Class in ClassWeight.items():
maxNum=maxNum+Class[1]
UTrace=list(UTrace)
if UTrace[i]>minNum and UTrace[i]<maxNum:
#print("Class:",Class[0])
Type=type(Class[0])
UTrace[i]=Class[0]
break
minNum=maxNum
newTrace.append(UTrace[i])
return newTrace
def CreateRaster(arr,rows,cols,outPath,RasterName,inputPrj,inputTrans):
Raster_arr=[[None for j in range(cols)] for i in range(rows)]
for n in range(100):
outRaster=outPath+"/"+RasterName+"_{}.tif".format(n+1)
if not exists(outRaster):
for i in range(rows):
for j in range(cols):
Raster_arr[i][j]=arr[i][j][n]
GetRasterEnt.arr2raster(Raster_arr, outRaster, inputPrj, inputTrans)
def RasterSampler_main(Raster_arr,RasterName_arr,Path):
outdataPath = Path + r"\Raster_outdata5000"
indataPath = Path + r"\Raster_indata5000"
for i in range(len(Raster_arr)):
outPath=outdataPath +'/'+RasterName_arr[i]
inPath = indataPath + '/' + RasterName_arr[i]
if os.path.exists(outPath):
print("目录已存在。")
else:
os.makedirs(outPath)
print("创建成功!")
inputRaster=inPath+'/'+Raster_arr[i]
RasterPoint=Path+'/'+r'fishNet_hunan5000\fishNet_hunan5000.shp'
# print("RasterValue_arr:",RasterValue_arr)
npy_Raster = outPath + '/' + RasterName_arr[i]+"5000_arr.npy"
print('npy_Raster', npy_Raster)
rows, cols, RasterValue_arr, Raster_ValueNeighbor, Raster_ArcDistanceNeighbor,inputPrj,inputTrans = GetRasterValue(inputRaster,RasterName_arr[i],
RasterPoint)
if not os.path.exists(npy_Raster):
Raster_newClass = getClassW(rows, cols, RasterValue_arr, Raster_ValueNeighbor, Raster_ArcDistanceNeighbor)
test_X = np.array(Raster_newClass)
np.save(npy_Raster , test_X)
RasterTrace = np.load(npy_Raster,allow_pickle=True)
print("Raster_newClass:", RasterTrace)
CreateRaster(RasterTrace, rows, cols, outPath, RasterName_arr[i],inputPrj,inputTrans)