-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain-dynbatch.py
565 lines (488 loc) · 20.2 KB
/
train-dynbatch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#!/usr/bin/env/python3
"""Finnish Parliament ASR
"""
import os
import sys
import torch
import logging
import speechbrain as sb
from hyperpyyaml import load_hyperpyyaml
from speechbrain.utils.distributed import run_on_main
import webdataset as wds
from glob import glob
import io
import torchaudio
sys.path.append("local/")
from make_shards import segments_to_output, wavscp_to_output
import pathlib
class KaldiData(torch.utils.data.IterableDataset):
def __init__(self, datadir):
datadir = pathlib.Path(datadir)
self.iterator = None
if (datadir / "segments").exists():
self.length = self._count_scp_lines(datadir / "segments")
self.dirtype = "segments"
else:
self.length = self._count_scp_lines(datadir / "wav.scp")
self.dirtype = "wavscp"
def __iter__(self):
if self.dirtype == "segments":
self.iterator = segments_to_output(datadir / "segments", datadir / "wav.scp")
else:
self.iterator = wavscp_to_output(datadir / "wav.scp")
return self
def __len__(self):
return self.length
def __next__(self):
uttid, data = next(self.iterator)
return {"__key__": uttid, "wav": data["audio.pth"]}
@staticmethod
def _count_scp_lines(scpfile):
lines = 0
with open(scpfile) as fin:
for _ in fin:
lines += 1
return lines
logger = logging.getLogger(__name__)
# Brain class for speech recognition training
class ASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Runs all the computation of the CTC + seq2seq ASR. It returns the
posterior probabilities of the CTC and seq2seq networks.
Arguments
---------
batch : PaddedBatch
This batch object contains all the relevant tensors for computation.
stage : sb.Stage
One of sb.Stage.TRAIN, sb.Stage.VALID, or sb.Stage.TEST.
Returns
-------
predictions : dict
At training time it returns predicted seq2seq log probabilities.
If needed it also returns the ctc output log probabilities.
At validation/test time, it returns the predicted tokens as well.
"""
# We first move the batch to the appropriate device.
batch = batch.to(self.device)
feats, self.feat_lens = self.prepare_features(stage, batch.wav)
tokens_bos, _ = self.prepare_tokens(stage, batch.tokens_bos)
# Running the encoder (prevent propagation to feature extraction)
encoded_signal = self.modules.encoder(feats.detach())
# Embed tokens and pass tokens & encoded signal to decoder
embedded_tokens = self.modules.embedding(tokens_bos)
decoder_outputs, _ = self.modules.decoder(
embedded_tokens, encoded_signal, self.feat_lens
)
# Output layer for seq2seq log-probabilities
logits = self.modules.seq_lin(decoder_outputs)
predictions = {"seq_logprobs": self.hparams.log_softmax(logits)}
#p_seq = predictions["seq_logprobs"]
#_, max_indices = torch.sort(p_seq, dim=2, descending=True)
#for timestep, indices in enumerate(max_indices[0]):
# print("Time:", timestep)
# for i, ind in enumerate(indices[:2]):
# print("\tTop", i, self.hparams.tokenizer.id_to_piece(ind.item()), p_seq[0,timestep,ind].exp())
#import sys; sys.exit()
if self.is_ctc_active(stage):
# Output layer for ctc log-probabilities
ctc_logits = self.modules.ctc_lin(encoded_signal)
predictions["ctc_logprobs"] = self.hparams.log_softmax(ctc_logits)
elif stage == sb.Stage.VALID:
predictions["tokens"], _ = self.hparams.valid_search(
encoded_signal, self.feat_lens
)
elif stage == sb.Stage.TEST:
predictions["tokens"], _ = self.hparams.test_search(
encoded_signal, self.feat_lens
)
return predictions
def is_ctc_active(self, stage):
"""Check if CTC is currently active.
Arguments
---------
stage : sb.Stage
Currently executing stage.
"""
if stage != sb.Stage.TRAIN:
return False
current_epoch = self.hparams.epoch_counter.current
return current_epoch <= self.hparams.number_of_ctc_epochs
def prepare_features(self, stage, wavs):
"""Prepare features for computation on-the-fly
Arguments
---------
stage : sb.Stage
Currently executing stage.
wavs : tuple
The input signals (tensor) and their lengths (tensor).
"""
wavs, wav_lens = wavs
# Add augmentation if specified. In this version of augmentation, we
# concatenate the original and the augment batches in a single bigger
# batch. This is more memory-demanding, but helps to improve the
# performance. Change it if you run OOM.
if stage == sb.Stage.TRAIN:
if hasattr(self.modules, "env_corrupt"):
wavs_noise = self.modules.env_corrupt(wavs, wav_lens)
wavs = torch.cat([wavs, wavs_noise], dim=0)
wav_lens = torch.cat([wav_lens, wav_lens])
if hasattr(self.hparams, "augmentation"):
wavs = self.hparams.augmentation(wavs, wav_lens)
# Feature computation and normalization
feats = self.hparams.compute_features(wavs)
feats = self.modules.normalize(feats, wav_lens)
return feats, wav_lens
def prepare_tokens(self, stage, tokens):
"""Double the tokens batch if features are doubled.
Arguments
---------
stage : sb.Stage
Currently executing stage.
tokens : tuple
The tokens (tensor) and their lengths (tensor).
"""
tokens, token_lens = tokens
if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN:
tokens = torch.cat([tokens, tokens], dim=0)
token_lens = torch.cat([token_lens, token_lens], dim=0)
return tokens, token_lens
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss given the predicted and targeted outputs. We here
do multi-task learning and the loss is a weighted sum of the ctc + seq2seq
costs.
Arguments
---------
predictions : dict
The output dict from `compute_forward`.
batch : PaddedBatch
This batch object contains all the relevant tensors for computation.
stage : sb.Stage
One of sb.Stage.TRAIN, sb.Stage.VALID, or sb.Stage.TEST.
Returns
-------
loss : torch.Tensor
A one-element tensor used for backpropagating the gradient.
"""
# Compute sequence loss against targets with EOS
tokens_eos, tokens_eos_lens = self.prepare_tokens(
stage, batch.tokens_eos
)
loss = sb.nnet.losses.nll_loss(
log_probabilities=predictions["seq_logprobs"],
targets=tokens_eos,
length=tokens_eos_lens,
label_smoothing=self.hparams.label_smoothing,
)
# Add ctc loss if necessary. The total cost is a weighted sum of
# ctc loss + seq2seq loss
if self.is_ctc_active(stage):
# Load tokens without EOS as CTC targets
tokens, tokens_lens = self.prepare_tokens(stage, batch.tokens)
loss_ctc = self.hparams.ctc_cost(
predictions["ctc_logprobs"], tokens, self.feat_lens, tokens_lens
)
loss *= 1 - self.hparams.ctc_weight
loss += self.hparams.ctc_weight * loss_ctc
if stage != sb.Stage.TRAIN:
# Converted predicted tokens from indexes to words
specials = [self.hparams.bos_index, self.hparams.eos_index, self.hparams.unk_index]
predictions["tokens"] = [
[token for token in pred if token not in specials]
for pred in predictions["tokens"]
]
predicted_words = [
self.hparams.tokenizer.decode_ids(prediction).split(" ")
for prediction in predictions["tokens"]
]
target_words = [words.split(" ") for words in batch.trn]
# Monitor word error rate and character error rated at
# valid and test time.
self.wer_metric.append(batch.__key__, predicted_words, target_words)
self.cer_metric.append(batch.__key__, predicted_words, target_words)
return loss
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch.
Arguments
---------
stage : sb.Stage
One of sb.Stage.TRAIN, sb.Stage.VALID, or sb.Stage.TEST.
epoch : int
The currently-starting epoch. This is passed
`None` during the test stage.
"""
# Set up statistics trackers for this stage
# In this case, we would like to keep track of the word error rate (wer)
# and the character error rate (cer)
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch.
Arguments
---------
stage : sb.Stage
One of sb.Stage.TRAIN, sb.Stage.VALID, sb.Stage.TEST
stage_loss : float
The average loss for all of the data processed in this stage.
epoch : int
The currently-starting epoch. This is passed
`None` during the test stage.
"""
# Store the train loss until the validation stage.
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
# Summarize the statistics from the stage for record-keeping.
else:
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
# Update learning rate
old_lr, new_lr = self.hparams.lr_annealing(stage_stats["WER"])
sb.nnet.schedulers.update_learning_rate(self.optimizer, new_lr)
# The train_logger writes a summary to stdout and to the logfile.
self.hparams.train_logger.log_stats(
stats_meta={"epoch": epoch, "lr": old_lr},
train_stats=self.train_stats,
valid_stats=stage_stats,
)
# Save the current checkpoint and delete previous checkpoints.
self.checkpointer.save_and_keep_only(
meta={"WER": stage_stats["WER"]}, min_keys=["WER"],
num_to_keep=getattr(self.hparams, "ckpts_to_keep", 1)
)
# We also write statistics about test data to stdout and to the logfile.
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
if hasattr(self.hparams, "decode_text_file"):
with open(self.hparams.decode_text_file, "w") as fo:
for utt_details in self.wer_metric.scores:
print(utt_details["key"], " ".join(utt_details["hyp_tokens"]), file=fo)
def on_evaluate_start(self, max_key=None, min_key=None):
super().on_evaluate_start(max_key=max_key, min_key=min_key)
if getattr(self.hparams, "avg_ckpts", 1) > 1:
ckpts = self.checkpointer.find_checkpoints(
max_key=max_key,
min_key=min_key,
max_num_checkpoints=self.hparams.avg_ckpts
)
model_state_dict = sb.utils.checkpoints.average_checkpoints(
ckpts, "model"
)
self.hparams.model.load_state_dict(model_state_dict)
self.checkpointer.save_checkpoint(name=f"AVERAGED-{self.hparams.avg_ckpts}")
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions.
Arguments
---------
hparams : dict
This dictionary is loaded from the `train.yaml` file, and it includes
all the hyperparameters needed for dataset construction and loading.
Returns
-------
datasets : dict
Dictionary containing "train", "valid", and "test" keys mapping to
WebDataset datasets dataloaders for them.
"""
def tokenize(sample):
text = sample["trn"]
# quick hack for one sample in text of test2021:
text = text.replace(" <NOISE>", "")
fulltokens = torch.LongTensor(
[hparams["bos_index"]] + hparams["tokenizer"].encode(text) + [hparams["eos_index"]]
)
sample["tokens"] = fulltokens[1:-1]
sample["tokens_bos"] = fulltokens[:-1]
sample["tokens_eos"] = fulltokens[1:]
return sample
traindata = (
wds.WebDataset(hparams["trainshards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.repeat()
.then(
sb.dataio.iterators.dynamic_bucketed_batch,
**hparams["dynamic_batch_kwargs"]
)
)
if "valid_dynamic_batch_kwargs" in hparams:
validdata = (
wds.WebDataset(hparams["validshards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.then(
sb.dataio.iterators.dynamic_bucketed_batch,
drop_end=False,
**hparams["valid_dynamic_batch_kwargs"]
)
)
else:
validdata = (
wds.WebDataset(hparams["validshards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
testseen = (
wds.WebDataset(hparams["test_seen_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
testunseen = (
wds.WebDataset(hparams["test_unseen_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
test2021 = (
wds.WebDataset(hparams["test_2021_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
test_speecon = (
wds.WebDataset(hparams["test_speecon_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth", meta="meta.json")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
test_yle = (
wds.WebDataset(hparams["test_yle_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth", meta="meta.json")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
normalizer = sb.dataio.preprocess.AudioNormalizer()
def normalize_audio(sample):
signal = sample["wav"]
samplerate = sample["meta"]["samplerate"]
sample["wav"] = normalizer(signal, samplerate)
sample["meta"]["samplerate"] = normalizer.sample_rate
return sample
test_lp= (
wds.WebDataset(hparams["test_lp_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth", meta="meta.json")
.map(tokenize)
.map(normalize_audio)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
datas = {"train": traindata, "valid": validdata, "test-seen": testseen,
"test-unseen": testunseen, "test2021": test2021,
"test-speecon": test_speecon, "test-yle": test_yle,
"test-lp": test_lp}
if "analysis_datadir" in hparams:
analysis_uttids = []
with open(hparams["analysis_datadir"] + "/utt2spk") as fin:
for line in fin:
uttid, _ = line.strip().split()
# HACK: WebDataset cannot handle periods in uttids:
uttid = uttid.replace(".", "")
analysis_uttids.append(uttid)
analysis_uttids = set(analysis_uttids)
def analysis_select(sample):
return sample["__key__"] in analysis_uttids
analysisdata = (
wds.WebDataset(hparams["fullshards"])
.decode()
.select(analysis_select)
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.then(
sb.dataio.iterators.dynamic_bucketed_batch,
sampler_kwargs={"target_batch_numel": 640000,"max_batch_numel": 1000000},
len_key='wav'
)
)
datas["analysis"] = analysisdata
return datas
if __name__ == "__main__":
# Reading command line arguments
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# Load hyperparameters file with command-line overrides
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# We can now directly create the datasets for training, valid, and test
datasets = dataio_prepare(hparams)
# Pretrain if defined:
if "pretrainer" in hparams:
ckpt = hparams["ckpt_finder"].find_checkpoint(min_key="WER")
hparams["pretrainer"].collect_files(ckpt.path)
hparams["pretrainer"].load_collected()
# Trainer initialization
asr_brain = ASR(
modules=hparams["modules"],
opt_class=hparams["opt_class"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# The `fit()` method iterates the training loop, calling the methods
# necessary to update the parameters of the model. Since all objects
# with changing state are managed by the Checkpointer, training can be
# stopped at any point, and will be resumed on next call.
train_loader_kwargs = hparams["train_loader_kwargs"]
train_loader_kwargs.setdefault("batch_size", None)
asr_brain.fit(
asr_brain.hparams.epoch_counter,
datasets["train"],
datasets["valid"],
train_loader_kwargs = train_loader_kwargs,
valid_loader_kwargs = hparams.get("valid_loader_kwargs", {"batch_size": None})
)
# Load best checkpoint (highest STOI) for evaluation
test_stats = asr_brain.evaluate(
test_set=datasets[hparams["test_data_id"]],
min_key="WER",
test_loader_kwargs = hparams.get("test_loader_kwargs", {"batch_size": None})
)