-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain-dynbatch-trafo.py
393 lines (337 loc) · 14 KB
/
train-dynbatch-trafo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env/python3
"""Finnish Parliament ASR
"""
import os
import sys
import torch
import logging
import speechbrain as sb
from hyperpyyaml import load_hyperpyyaml
from speechbrain.utils.distributed import run_on_main
import webdataset as wds
from glob import glob
import io
import torchaudio
logger = logging.getLogger(__name__)
# Brain class for speech recognition training
class TrafoASR(sb.Brain):
def compute_forward(self, batch, stage):
"""Forward computations from the waveform batches to the output probabilities."""
batch = batch.to(self.device)
wavs, wav_lens = batch.wav
tokens_bos, _ = batch.tokens_bos
# compute features
feats = self.hparams.compute_features(wavs)
current_epoch = self.hparams.epoch_counter.current
feats = self.modules.normalize(feats, wav_lens, epoch=current_epoch)
# augmentation:
if stage == sb.Stage.TRAIN:
if hasattr(self.hparams, "augmentation"):
feats = self.hparams.augmentation(feats)
# forward modules
src = self.modules.CNN(feats)
enc_out, pred = self.modules.Transformer(
src, tokens_bos, wav_lens, pad_idx=self.hparams.pad_index
)
if self.is_ctc_active(stage):
# Output layer for ctc log-probabilities
ctc_logits = self.modules.ctc_lin(enc_out)
p_ctc = self.hparams.log_softmax(ctc_logits)
else:
p_ctc = None
# output layer for seq2seq log-probabilities
pred = self.modules.seq_lin(pred)
p_seq = self.hparams.log_softmax(pred)
#_, max_indices = torch.sort(p_seq, dim=2, descending=True)
#for timestep, indices in enumerate(max_indices[0]):
# print("Time:", timestep)
# for i, ind in enumerate(indices[:2]):
# print("\tTop", i, self.hparams.tokenizer.id_to_piece(ind.item()), p_seq[0,timestep,ind].exp())
#import sys; sys.exit()
if stage == sb.Stage.TRAIN:
hyps = None
elif stage == sb.Stage.VALID:
hyps, _ = self.hparams.valid_search(enc_out.detach(), wav_lens)
elif stage == sb.Stage.TEST:
hyps, _ = self.hparams.test_search(enc_out.detach(), wav_lens)
return p_ctc, p_seq, wav_lens, hyps
def is_ctc_active(self, stage):
if stage != sb.Stage.TRAIN:
return False
current_epoch = self.hparams.epoch_counter.current
return current_epoch <= self.hparams.number_of_ctc_epochs
def compute_objectives(self, predictions, batch, stage):
"""Computes the loss (CTC+NLL) given predictions and targets."""
(p_ctc, p_seq, wav_lens, hyps,) = predictions
ids = batch.__key__
tokens_eos, tokens_eos_lens = batch.tokens_eos
tokens, tokens_lens = batch.tokens
loss_seq = self.hparams.seq_cost(
p_seq, tokens_eos, length=tokens_eos_lens
)
if self.is_ctc_active(stage):
loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens)
loss = (
self.hparams.ctc_weight * loss_ctc
+ (1 - self.hparams.ctc_weight) * loss_seq
)
else:
loss = loss_seq
if stage != sb.Stage.TRAIN:
specials = [self.hparams.bos_index, self.hparams.eos_index, self.hparams.unk_index]
# Decode token terms to words
hyps = [
[token for token in pred if token not in specials]
for pred in hyps
]
predicted_words = [
self.hparams.tokenizer.decode_ids(utt_seq).split() for utt_seq in hyps
]
target_words = [sentence.split() for sentence in batch.trn]
self.wer_metric.append(ids, predicted_words, target_words)
self.cer_metric.append(ids, predicted_words, target_words)
# compute the accuracy of the one-step-forward prediction
self.acc_metric.append(p_seq, tokens_eos, tokens_eos_lens)
return loss
def fit_batch(self, batch):
"""Train the parameters given a single batch in input"""
# check if we need to switch optimizer
# if so change the optimizer from Adam to SGD
predictions = self.compute_forward(batch, sb.Stage.TRAIN)
loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN)
# normalize the loss by gradient_accumulation step
(loss / self.hparams.gradient_accumulation).backward()
if self.step % self.hparams.gradient_accumulation == 0:
# anneal lr every update, first
self.hparams.noam_annealing(self.optimizer)
# gradient clipping & early stop if loss is not fini
self.check_gradients(loss)
self.optimizer.step()
self.optimizer.zero_grad()
return loss.detach()
def evaluate_batch(self, batch, stage):
"""Computations needed for validation/test batches"""
with torch.no_grad():
predictions = self.compute_forward(batch, stage=stage)
loss = self.compute_objectives(predictions, batch, stage=stage)
return loss.detach()
def on_stage_start(self, stage, epoch):
"""Gets called at the beginning of each epoch.
Arguments
---------
stage : sb.Stage
One of sb.Stage.TRAIN, sb.Stage.VALID, or sb.Stage.TEST.
epoch : int
The currently-starting epoch. This is passed
`None` during the test stage.
"""
# Set up statistics trackers for this stage
# In this case, we would like to keep track of the word error rate (wer)
# and the character error rate (cer)
if stage != sb.Stage.TRAIN:
self.cer_metric = self.hparams.cer_computer()
self.wer_metric = self.hparams.error_rate_computer()
self.acc_metric = self.hparams.acc_computer()
def on_stage_end(self, stage, stage_loss, epoch):
"""Gets called at the end of an epoch.
Arguments
---------
stage : sb.Stage
One of sb.Stage.TRAIN, sb.Stage.VALID, sb.Stage.TEST
stage_loss : float
The average loss for all of the data processed in this stage.
epoch : int
The currently-starting epoch. This is passed
`None` during the test stage.
"""
# Store the train loss until the validation stage.
stage_stats = {"loss": stage_loss}
if stage == sb.Stage.TRAIN:
self.train_stats = stage_stats
# Summarize the statistics from the stage for record-keeping.
else:
stage_stats["ACC"] = self.acc_metric.summarize()
stage_stats["CER"] = self.cer_metric.summarize("error_rate")
stage_stats["WER"] = self.wer_metric.summarize("error_rate")
# Perform end-of-iteration things, like annealing, logging, etc.
if stage == sb.Stage.VALID:
# report different epoch stages according current stage
current_epoch = self.hparams.epoch_counter.current
lr = self.hparams.noam_annealing.current_lr
steps = self.hparams.noam_annealing.n_steps
epoch_stats = {
"epoch": epoch,
"lr": lr,
"steps": steps,
}
self.hparams.train_logger.log_stats(
stats_meta=epoch_stats,
train_stats=self.train_stats,
valid_stats=stage_stats,
)
self.checkpointer.save_and_keep_only(
meta={"ACC": stage_stats["ACC"], "WER": stage_stats["WER"], "epoch": epoch},
min_keys=["WER"],
max_keys=["ACC"],
num_to_keep=self.hparams.ckpts_to_keep,
)
elif stage == sb.Stage.TEST:
self.hparams.train_logger.log_stats(
stats_meta={"Epoch loaded": self.hparams.epoch_counter.current},
test_stats=stage_stats,
)
with open(self.hparams.wer_file, "w") as w:
self.wer_metric.write_stats(w)
if hasattr(self.hparams, "decode_text_file"):
with open(self.hparams.decode_text_file, "w") as fo:
for utt_details in self.wer_metric.scores:
print(utt_details["key"], " ".join(utt_details["hyp_tokens"]), file=fo)
def on_evaluate_start(self, max_key=None, min_key=None):
super().on_evaluate_start(max_key=max_key, min_key=min_key)
if getattr(self.hparams, "avg_ckpts", 1) > 1:
ckpts = self.checkpointer.find_checkpoints(
max_key=max_key,
min_key=min_key,
max_num_checkpoints=self.hparams.avg_ckpts
)
model_state_dict = sb.utils.checkpoints.average_checkpoints(
ckpts, "model"
)
self.hparams.model.load_state_dict(model_state_dict)
#self.checkpointer.save_checkpoint(name=f"AVERAGED-{self.hparams.avg_ckpts}")
def dataio_prepare(hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions.
Arguments
---------
hparams : dict
This dictionary is loaded from the `train.yaml` file, and it includes
all the hyperparameters needed for dataset construction and loading.
Returns
-------
datasets : dict
Dictionary containing "train", "valid", and "test" keys mapping to
WebDataset datasets dataloaders for them.
"""
def tokenize(sample):
text = sample["trn"]
fulltokens = torch.LongTensor(
[hparams["bos_index"]] + hparams["tokenizer"].encode(text) + [hparams["eos_index"]]
)
sample["tokens"] = fulltokens[1:-1]
sample["tokens_bos"] = fulltokens[:-1]
sample["tokens_eos"] = fulltokens[1:]
return sample
traindata = (
wds.WebDataset(hparams["trainshards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.repeat()
.then(
sb.dataio.iterators.dynamic_bucketed_batch,
**hparams["dynamic_batch_kwargs"]
)
)
if "valid_dynamic_batch_kwargs" in hparams:
validdata = (
wds.WebDataset(hparams["validshards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.then(
sb.dataio.iterators.dynamic_bucketed_batch,
drop_end=False,
**hparams["valid_dynamic_batch_kwargs"]
)
)
else:
validdata = (
wds.WebDataset(hparams["validshards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
validdataall = (
wds.WebDataset(hparams["validshards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
testseen = (
wds.WebDataset(hparams["test_seen_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
testunseen = (
wds.WebDataset(hparams["test_unseen_shards"])
.decode()
.rename(trn="transcript.txt", wav="audio.pth")
.map(tokenize)
.batched(
batchsize=hparams["validbatchsize"],
collation_fn=sb.dataio.batch.PaddedBatch,
partial=True
)
)
return {"train": traindata, "valid": validdata,
"validall":validdataall, "test-seen": testseen, "test-unseen": testunseen}
if __name__ == "__main__":
# Reading command line arguments
hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:])
# Load hyperparameters file with command-line overrides
with open(hparams_file) as fin:
hparams = load_hyperpyyaml(fin, overrides)
# Create experiment directory
sb.create_experiment_directory(
experiment_directory=hparams["output_folder"],
hyperparams_to_save=hparams_file,
overrides=overrides,
)
# We can now directly create the datasets for training, valid, and test
datasets = dataio_prepare(hparams)
# Pretrain if defined:
if "pretrainer" in hparams:
ckpt = hparams["ckpt_finder"].find_checkpoint(min_key="WER")
hparams["pretrainer"].collect_files(ckpt.path)
hparams["pretrainer"].load_collected()
# Trainer initialization
asr_brain = TrafoASR(
modules=hparams["modules"],
opt_class=hparams["opt_class"],
hparams=hparams,
run_opts=run_opts,
checkpointer=hparams["checkpointer"],
)
# The `fit()` method iterates the training loop, calling the methods
# necessary to update the parameters of the model. Since all objects
# with changing state are managed by the Checkpointer, training can be
# stopped at any point, and will be resumed on next call.
asr_brain.fit(
asr_brain.hparams.epoch_counter,
datasets["train"],
datasets["valid"],
train_loader_kwargs = hparams["train_loader_kwargs"],
valid_loader_kwargs = hparams["valid_loader_kwargs"]
)
# Load best checkpoint (highest STOI) for evaluation
test_stats = asr_brain.evaluate(
test_set=datasets[hparams["test_data_id"]],
max_key=hparams["test_max_key"],
)