-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlm_dataset.py
95 lines (79 loc) · 3.02 KB
/
lm_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import speechbrain as sb
from speechbrain.dataio.dataset import DynamicItemDataset
from speechbrain.utils.data_pipeline import takes, provides
@takes("tokens")
@provides("tokens_bos", "tokens_eos")
def to_eos_bos(tokens):
yield tokens[:-1]
yield tokens[1:]
def construct_static_lm_data(textfile, tokenizer, bos, eos):
bosl = [bos]
eosl = [eos]
tokenized_sentences = {}
with open(textfile) as fi:
for lineno, line in enumerate(fi):
text = line.strip()
ids = tokenizer.encode_as_ids(text)
tokenized_sentences[str(lineno)] = {"tokens": torch.LongTensor(bosl + ids + eosl)}
dataset = DynamicItemDataset(tokenized_sentences)
dataset.add_dynamic_item(to_eos_bos)
dataset.set_output_keys(["id", "tokens_eos", "tokens_bos"])
return dataset
class EndlessDynamicLMData(torch.utils.data.IterableDataset):
def __init__(self, textfile, tokenizer, bos, eos, dynbatch_kwargs):
super().__init__()
self.textfile = textfile
self.tokenizer = tokenizer
self.bosl = [bos]
self.eosl = [eos]
self.dynbatch_kwargs = dynbatch_kwargs
def __iter__(self):
return sb.dataio.iterators.dynamic_bucketed_batch(
self.repeated_data(),
**self.dynbatch_kwargs
)
def repeated_data(self):
while True:
with open(self.textfile) as fi:
for line in fi:
text = line.strip()
ids = self.tokenizer.encode_as_ids(text)
tokens = torch.LongTensor(self.bosl + ids + self.eosl)
yield {"tokens_bos": tokens[:-1],
"tokens_eos": tokens[1:]}
"""
# This versions adds bos and eos from tokenizer:
class EndlessDynamicLMData(torch.utils.data.IterableDataset):
def __init__(self, textfile, tokenizer, dynbatch_kwargs):
super().__init__()
self.textfile = textfile
self.tokenizer = tokenizer
self.dynbatch_kwargs = dynbatch_kwargs
def __iter__(self):
return sb.dataio.iterators.dynamic_bucketed_batch(
self.repeated_data(),
**self.dynbatch_kwargs
)
def repeated_data(self):
while True:
with open(self.textfile) as fi:
for line in fi:
text = line.strip()
ids = self.tokenizer.encode(text, add_bos=True, add_eos=True, out_type=int)
tokens = torch.LongTensor(ids)
yield {"tokens_bos": tokens[:-1],
"tokens_eos": tokens[1:]}
"""
def repeatedly(iterable):
while True:
for element in iterable:
yield element
class EndlessDynBatchIterable(torch.utils.data.IterableDataset):
def __init__(self, iterable, dynbatch_kwargs):
self.iterable = sb.dataio.iterators.dynamic_bucketed_batch(
repeatedly(iterable),
**dynbatch_kwargs
)
def __iter__(self):
return iter(self.iterable)