This repository has been archived by the owner on Nov 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmap_segmentation.py
149 lines (116 loc) · 5.31 KB
/
map_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import numpy as np
import cv2
from PIL import Image
import urllib.parse
import urllib.request
import io
from math import log, exp, tan, atan, pi, ceil
from place_lookup import find_coordinates
from calc_area import afforestation_area
EARTH_RADIUS = 6378137
EQUATOR_CIRCUMFERENCE = 2 * pi * EARTH_RADIUS
INITIAL_RESOLUTION = EQUATOR_CIRCUMFERENCE / 256.0
ORIGIN_SHIFT = EQUATOR_CIRCUMFERENCE / 2.0
def latlontopixels(lat, lon, zoom):
mx = (lon * ORIGIN_SHIFT) / 180.0
my = log(tan((90 + lat) * pi / 360.0)) / (pi / 180.0)
my = (my * ORIGIN_SHIFT) / 180.0
res = INITIAL_RESOLUTION / (2 ** zoom)
px = (mx + ORIGIN_SHIFT) / res
py = (my + ORIGIN_SHIFT) / res
return px, py
def pixelstolatlon(px, py, zoom):
res = INITIAL_RESOLUTION / (2 ** zoom)
mx = px * res - ORIGIN_SHIFT
my = py * res - ORIGIN_SHIFT
lat = (my / ORIGIN_SHIFT) * 180.0
lat = 180 / pi * (2 * atan(exp(lat * pi / 180.0)) - pi / 2.0)
lon = (mx / ORIGIN_SHIFT) * 180.0
return lat, lon
query = input('What kinda places you want me look up? ')
results = find_coordinates(query)
zoom = 18
ullat, ullon = results['upper_left']
lrlat, lrlon = results['lower_right']
scale = 1
maxsize = 640
ulx, uly = latlontopixels(ullat, ullon, zoom)
lrx, lry = latlontopixels(lrlat, lrlon, zoom)
dx, dy = lrx - ulx, uly - lry
cols, rows = int(ceil(dx / maxsize)), int(ceil(dy / maxsize))
bottom = 120
largura = int(ceil(dx / cols))
altura = int(ceil(dy / rows))
alturaplus = altura + bottom
final = Image.new("RGB", (int(dx), int(dy)))
for x in range(cols):
for y in range(rows):
dxn = largura * (0.5 + x)
dyn = altura * (0.5 + y)
latn, lonn = pixelstolatlon(ulx + dxn, uly - dyn - bottom / 2, zoom)
position = ','.join((str(latn), str(lonn)))
print(x, y, position)
urlparams = urllib.parse.urlencode({'center': position,
'zoom': str(zoom),
'size': '%dx%d' % (largura, alturaplus),
'maptype': 'satellite',
'sensor': 'false',
'scale': scale,
'key': 'AIzaSyA_d4uV3HqPPWbCb77VhXNYn5UcXRLAiVc'})
urlparamsmaps = urllib.parse.urlencode({'center': position,
'zoom': str(zoom),
'size': '%dx%d' % (largura, alturaplus),
'maptype': 'roadmap',
'sensor': 'false',
'scale': scale,
'key': 'AIzaSyA_d4uV3HqPPWbCb77VhXNYn5UcXRLAiVc'})
url = 'http://maps.google.com/maps/api/staticmap?' + urlparams
url1 = 'http://maps.google.com/maps/api/staticmap?' + urlparamsmaps
f = urllib.request.urlopen(url)
h = urllib.request.urlopen(url1)
image = io.BytesIO(f.read())
imagemaps = io.BytesIO(h.read())
im = Image.open(image)
immaps = Image.open(imagemaps)
im.save("map.png")
immaps.save("map_normal.png")
img = cv2.imread('map.png')
img_maps = cv2.imread('map_normal.png')
shifted = cv2.pyrMeanShiftFiltering(img, 7, 30)
shifted_normal = cv2.pyrMeanShiftFiltering(img_maps, 7, 30)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
hsv = cv2.cvtColor(shifted, cv2.COLOR_BGR2HSV)
hsv_normal = cv2.cvtColor(shifted_normal, cv2.COLOR_BGR2HSV)
lower_trees = np.array([10,0,30])
higher_trees = np.array([180,100,95])
lower_houses = np.array([90,10,100])
higher_houses = np.array([255,255,255])
lower_roads = np.array([0, 0, 250])
higher_roads = np.array([20, 20, 255])
lower_feilds = np.array([0,50,100])
higher_feilds = np.array([50,255,130])
lower_feilds_blue = np.array([0,80,100])
higher_feilds_blue = np.array([255,250,255])
masktree = cv2.inRange(hsv, lower_trees, higher_trees)
maskhouses = cv2.inRange(hsv, lower_houses, higher_houses)
maskroads = cv2.inRange(hsv_normal, lower_roads, higher_roads)
maskfeilds = cv2.inRange(hsv, lower_feilds, higher_feilds)
gausssion_blur_maskfields = cv2.GaussianBlur(maskfeilds, (15, 15), 0)
gausssion_blur_masktree = cv2.GaussianBlur(masktree, (15, 15), 0)
blue_limiter = cv2.inRange(hsv, lower_feilds_blue, higher_feilds_blue)
res_roads = cv2.bitwise_and(img_maps, img, mask=maskroads)
#res_houses = cv2.bitwise_and(img,img,mask=maskhouses)
res_feilds = cv2.bitwise_and(img, img, mask=gausssion_blur_maskfields)
res_trees = cv2.bitwise_and(img, img, mask=masktree)
# show the output image
cv2.imshow('res', res_trees)
cv2.imshow('res_fields', res_feilds)
cv2.imshow('res_roads', res_roads)
#cv2.imshow('res_houses',res_houses)
#cv2.imshow('mask',maskfeilds)
cv2.imshow('img', img)
#cv2.imshow("hsv", hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()
tot_land_area_acres, number_of_trees = afforestation_area()