-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathssw_S1GS.py
414 lines (348 loc) · 10.8 KB
/
ssw_S1GS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# packages #
import sys
import numpy as np
import time
from quspin.basis import spin_basis_1d
from quspin.operators import hamiltonian
###############################################################################
# general functions #
# Hamiltonian: BLBQ, 1D
def H_BLBQ_1D(N,J,beta,BC,basis):
#J
SpSm = [[J/2,i,(i+1)%N] for i in range(N-1+BC)]
SmSp = [[J/2,i,(i+1)%N] for i in range(N-1+BC)]
SzSz = [[J,i,(i+1)%N] for i in range(N-1+BC)]
#β
SzSzSzSz = [[beta*J,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SzSpSzSm = [[beta*J/2,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SzSmSzSp = [[beta*J/2,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SpSzSmSz = [[beta*J/2,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SmSzSpSz = [[beta*J/2,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SpSpSmSm = [[beta*J/4,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SpSmSmSp = [[beta*J/4,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SmSpSpSm = [[beta*J/4,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
SmSmSpSp = [[beta*J/4,i,i,(i+1)%N,(i+1)%N] for i in range(N-1+BC)]
static = [
["+-",SpSm],
["-+",SmSp],
["zz",SzSz],
["zzzz", SzSzSzSz],
["z+z-", SzSpSzSm],
["z-z+", SzSmSzSp],
["+z-z", SpSzSmSz],
["-z+z", SmSzSpSz],
["++--", SpSpSmSm],
["+--+", SpSmSmSp],
["-++-", SmSpSpSm],
["--++", SmSmSpSp]
]
dynamic = []
no_checks = dict(check_pcon=False,check_symm=False,check_herm=False)
H = hamiltonian(static,dynamic,basis=basis,dtype=np.float64,**no_checks)
return H
# Sz(i) operator
def Szi_op(i,basis):
Sz = [[1,i]]
static = [
['z',Sz]
]
dynamic = []
no_checks = dict(check_pcon=False,check_symm=False,check_herm=False)
Szi = hamiltonian(static,dynamic,basis=basis,dtype=np.float64,**no_checks)
return Szi
# Sx(i) operator
def Sxi_op(i,basis):
Sp = [[1/2,i]]
Sm = [[1/2,i]]
static = [
['+',Sp],
['-',Sm]
]
dynamic = []
no_checks = dict(check_pcon=False,check_symm=False,check_herm=False)
Sxi = hamiltonian(static,dynamic,basis=basis,dtype=np.float64,**no_checks)
return Sxi
# ISy(i) operator
def ISyi_op(i,basis):
Sp = [[1/2,i]]
Sm = [[-1/2,i]]
static = [
['+',Sp],
['-',Sm]
]
dynamic = []
no_checks = dict(check_pcon=False,check_symm=False,check_herm=False)
ISyi = hamiltonian(static,dynamic,basis=basis,dtype=np.float64,**no_checks)
return ISyi
# Sz operator
def Sz_op(Nsites,basis):
Sz = 0
for i in range(Nsites):
Sz += Szi_op(i,basis)
return Sz
# S^2 operator
def S2_op(Nsites,basis):
Sz = Sz_op(Nsites,basis)
#S+S-
SpSm = [[1,i,j] for i in range(Nsites) for j in range(Nsites)]
static = [
['+-',SpSm]
]
dynamic = []
no_checks = dict(check_pcon=False,check_symm=False,check_herm=False)
SpSm = hamiltonian(static,dynamic,basis=basis,dtype=np.float64,**no_checks)
S2 = SpSm + np.dot(Sz,Sz) - Sz
return S2
# spin spectral weight GS(S=1) -> S0
def calc_ssw_S1S0(EnGS,psiGS,EnS0,psinS0,Nsites,basis):
Sziop = [Szi_op(i,basis) for i in range(Nsites)]
Sxiop = [Sxi_op(i,basis) for i in range(Nsites)]
ISyiop = [ISyi_op(i,basis) for i in range(Nsites)]
excE_nS0 = [0.0 for nS0 in range(len(EnS0))]
sswi_nS0 = [[0.0 for i in range(Nsites)] for nS0 in range(len(EnS0))]
for nS0 in range(len(EnS0)):
excE_nS0[nS0] = EnS0[nS0] - EnGS
for i in range(Nsites):
for jGS in range(3):
#|<GS|Sz(i)|psinS0>|^2
sswi_nS0[nS0][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
Sziop[i].dot(psinS0[nS0])) )**2
#|<GS|Sx(i)|psinS0>|^2
sswi_nS0[nS0][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
Sxiop[i].dot(psinS0[nS0])) )**2
#|<GS|ISy(i)|psinS0>|^2
sswi_nS0[nS0][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
ISyiop[i].dot(psinS0[nS0])) )**2
return excE_nS0, sswi_nS0
# spin spectral weight GS(S=1) -> S1
def calc_ssw_S1S1(EnGS,psiGS,EnS1,psinS1,Nsites,basis):
Sziop = [Szi_op(i,basis) for i in range(Nsites)]
Sxiop = [Sxi_op(i,basis) for i in range(Nsites)]
ISyiop = [ISyi_op(i,basis) for i in range(Nsites)]
excE_nS1 = [0.0 for nS1 in range(len(EnS1)//3)]
sswi_nS1 = [[0.0 for i in range(Nsites)] for nS1 in range(len(EnS1)//3)]
for nS1 in range(len(EnS1)//3):
excE_nS1[nS1] = EnS1[nS1*3] - EnGS
for i in range(Nsites):
for jGS in range(3):
for j in range(3):
#|<GS|Sz(i)|psinS1>|^2
sswi_nS1[nS1][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
Sziop[i].dot(psinS1[nS1*3+j])) )**2
#|<GS|Sx(i)|psinS1>|^2
sswi_nS1[nS1][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
Sxiop[i].dot(psinS1[nS1*3+j])) )**2
#|<GS|ISy(i)|psinS1>|^2
sswi_nS1[nS1][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
ISyiop[i].dot(psinS1[nS1*3+j])) )**2
return excE_nS1, sswi_nS1
# spin spectral weight GS(S=1) -> S2
def calc_ssw_S1S2(EnGS,psiGS,EnS2,psinS2,Nsites,basis):
Sziop = [Szi_op(i,basis) for i in range(Nsites)]
Sxiop = [Sxi_op(i,basis) for i in range(Nsites)]
ISyiop = [ISyi_op(i,basis) for i in range(Nsites)]
excE_nS2 = [0.0 for nS2 in range(len(EnS2)//5)]
sswi_nS2 = [[0.0 for i in range(Nsites)] for nS2 in range(len(EnS2)//5)]
for nS2 in range(len(EnS2)//5):
excE_nS2[nS2] = EnS2[nS2*5] - EnGS
for i in range(Nsites):
for jGS in range(3):
for j in range(5):
#|<GS|Sz(i)|psinS1>|^2
sswi_nS2[nS2][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
Sziop[i].dot(psinS2[nS2*5+j])) )**2
#|<GS|Sx(i)|psinS1>|^2
sswi_nS2[nS2][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
Sxiop[i].dot(psinS2[nS2*5+j])) )**2
#|<GS|ISy(i)|psinS1>|^2
sswi_nS2[nS2][i] += 1/3*abs( np.dot(psiGS[jGS].conj(),
ISyiop[i].dot(psinS2[nS2*5+j])) )**2
return excE_nS2, sswi_nS2
###############################################################################
# main #
start_time = time.time()
# read inputs
if len(sys.argv) != 8:
print('Error: run code as #python_<code.py>_<s>_<N>_<J(meV)>_<beta>_<BC>'
+ '_<DeltaE(meV)>_<nLanczos>\n')
sys.exit(0)
# physical parameters
## s
try:
s = float(sys.argv[1])
except:
print('Error: insert integer or half-integer s > 0\n')
sys.exit(0)
if (2*s)%1 != 0 or s <= 0:
print('Error: insert integer or half-integer s > 0\n')
sys.exit(0)
## N
try:
N = int(sys.argv[2])
except:
print('Error: insert integer N >= 2\n')
sys.exit(0)
if N%1 != 0 or N <= 1:
print('Error: insert integer N >= 2\n')
sys.exit(0)
## J
try:
J = float(sys.argv[3])
except:
print('Error: insert real J != 0\n')
sys.exit(0)
if J==0:
print('Error: insert real J != 0\n')
sys.exit(0)
## beta
try:
beta = float(sys.argv[4])
except:
print('Error: insert real beta\n')
sys.exit(0)
## BC
try:
BC = int(sys.argv[5])
except:
print('Error: insert BC=0 (1) for open (periodic) boundary conditions\n')
sys.exit(0)
if BC!=0 and BC!=1:
print('Error: insert BC=0 (1) for open (periodic) boundary conditions\n')
sys.exit(0)
# other parameters
## DeltaE
try:
DeltaE = float(sys.argv[6])
except:
print('Error: insert real DeltaE >= 0\n')
sys.exit(0)
if DeltaE < 0:
print('Error: insert real DeltaE >= 0\n')
sys.exit(0)
## nLanczos
try:
nLanczos = int(sys.argv[7])
except:
print('Error: insert integer nLanczos > 0\n')
sys.exit(0)
if nLanczos%1 != 0 or nLanczos <= 0:
print('Error: insert integer nLanczos > 0\n')
sys.exit(0)
# open writing file
fw = open("results_ssw-S1GS/s" + str(s) + "_N" + str(N) + "_J" + str(J)
+ "meV_beta" + str(beta) + "_BC" + str(BC) + "_DeltaE" + str(DeltaE)
+ "meV_nLanczos" + str(nLanczos) + ".txt", "w")
# Szlist for ssw with S=1 GS
Szlist = [-2,-1,0,+1,+2]
# Nup list from Szlist
Nup = [int(Sz+N*s) for Sz in Szlist]
# basis
if (2*s)%2 == 0:
basis = spin_basis_1d(N, Nup=Nup, S=str(int(s)), pauli=False)
else:
basis = spin_basis_1d(N, Nup=Nup, S=str(int(2*s)) + '/2', pauli=False)
t1 = time.time() - start_time
# Hamiltonian
H = H_BLBQ_1D(N,J,beta,BC,basis)
t2 = time.time() - start_time
# diagonalization
En,psin = H.eigsh(k=nLanczos, which='SA')
t3 = time.time() - start_time
# nmax
nmax = len(En)
for n in range(1,len(En)):
if En[n]-En[0] > DeltaE:
nmax = n
break
if nmax==len(En):
print("Warning: larger nLanczos is required\n")
# S^2 operator
S2op = S2_op(N,basis)
# <psin|S^2|psin>
S2n = [np.dot(psin[:,n].conj(),S2op.dot(psin[:,n])) for n in range(nmax)]
# ssw for S=1 GS
## GS
EnGS, psiGS = En[0], [psin[:,0],psin[:,1],psin[:,2]]
### error alerts
for j in range(3):
if abs(S2n[j]-2) > 1e-8:
print('Error: GS triad does not have S=1\n')
sys.exit(0)
if abs(EnGS-En[j]) > 1e-8:
print('Error: GS triad is not degenerate\n')
sys.exit(0)
if abs(EnGS-En[3]) < 1e-8:
print('Error: S=1 GS is not unique\n')
sys.exit(0)
## relevant states (S=0, S=1, S=2)
EnS0, psinS0 = [], []
EnS1, psinS1 = [], []
EnS2, psinS2 = [], []
for n in range(nmax):
if abs(S2n[n]-0) < 1e-8:
psinS0.append(psin[:,n])
EnS0.append(En[n])
if abs(S2n[n]-2) < 1e-8:
psinS1.append(psin[:,n])
EnS1.append(En[n])
if abs(S2n[n]-6) < 1e-8:
psinS2.append(psin[:,n])
EnS2.append(En[n])
### error alerts
if len(EnS1)%3 != 0:
print('Error: number of S=1 states is not multiple of 3\n')
sys.exit(0)
for nS1 in range(len(EnS1)//3):
for j in range(1,3):
if abs(EnS1[nS1*3]-EnS1[nS1*3+j]) > 1e-8:
print('Error: triad nr ' + str(nS1) + ' of S=1 states is not ' +
'degenerate\n')
sys.exit(0)
if len(EnS2)%5 != 0:
print('Error: number of S=2 states is not multiple of 5\n')
sys.exit(0)
for nS2 in range(len(EnS2)//5):
for j in range(1,5):
if abs(EnS2[nS2*5]-EnS2[nS2*5+j]) > 1e-8:
print('Error: quintet nr ' + str(nS2) + ' of S=2 states is not ' +
'degenerate\n')
sys.exit(0)
## list of te, ssw(i)
excE_nS0, sswi_nS0 = calc_ssw_S1S0(EnGS,psiGS,EnS0,psinS0,N,basis)
excE_nS1, sswi_nS1 = calc_ssw_S1S1(EnGS,psiGS,EnS1,psinS1,N,basis)
excE_nS2, sswi_nS2 = calc_ssw_S1S2(EnGS,psiGS,EnS2,psinS2,N,basis)
t4 = time.time() - start_time
# outputs
for n in range(nmax):
fw.write("#E" + str(n) + " = " + str(En[n]) + " meV\n")
fw.write("\n")
for n in range(nmax):
fw.write("#S^2 for state " + str(n) + " = " + str(S2n[n]) + "\n")
fw.write("--------------------\n\n")
fw.write("#List of excitation energies for GS (S=1) -> S=0 (meV):\n")
fw.write(str(excE_nS0))
fw.write("\n")
fw.write("#List of spin spectral weights for GS (S=1) -> S=0:\n")
fw.write(str(sswi_nS0))
fw.write("\n\n")
fw.write("#List of excitation energies for GS (S=1) -> S=1 (meV):\n")
fw.write(str(excE_nS1))
fw.write("\n")
fw.write("#List of spin spectral weights for GS (S=1) -> S=1:\n")
fw.write(str(sswi_nS1))
fw.write("\n\n")
fw.write("#List of excitation energies for GS (S=1) -> S=2 (meV):\n")
fw.write(str(excE_nS2))
fw.write("\n")
fw.write("#List of spin spectral weights for GS (S=1) -> S=2:\n")
fw.write(str(sswi_nS2))
fw.write("\n\n")
fw.write("--------------------\n")
fw.write("#time to initialize and find basis = " + str(t1) + " s\n")
fw.write("#time to build Hamiltonian = " + str(t2-t1) + " s\n")
fw.write("#time to diagonalize = " + str(t3-t2) + " s\n")
fw.write("#time to compute spin spectral weights = " + str(t4-t3) + " s\n")
fw.write("#total time = " + str(time.time() - start_time) + " s\n")
## close file
fw.close()
###############################################################################