diff --git a/examples/plot_clustering.py b/examples/plot_clustering.py index 187a37a23..4ad6b0ec6 100644 --- a/examples/plot_clustering.py +++ b/examples/plot_clustering.py @@ -75,9 +75,8 @@ print(kmeans.predict(fd)) ############################################################################## -# To see the information in a graphic way, the method -# :func:`~skfda.exploratory.visualization.clustering_plots.plot_clusters` can -# be used. +# To see the information in a graphic way, we can use the class +# :class:`~skfda.exploratory.visualization.clustering.ClusterPlot`. # Customization of cluster colors and labels in order to match the first image # of raw data. @@ -104,8 +103,8 @@ print(fuzzy_kmeans.predict_proba(fd)) ############################################################################## -# To see the information in a graphic way, the method -# :func:`~skfda.exploratory.visualization.clustering_plots.plot_clusters` can +# To see the information in a graphic way, the class +# :class:`~skfda.exploratory.visualization.clustering.ClusterPlot` can # be used. It assigns each sample to the cluster whose membership value is the # greatest. @@ -115,7 +114,7 @@ ############################################################################## # Another plot implemented to show the results in the class # :class:`~skfda.ml.clustering.FuzzyCMeans` is -# :func:`~skfda.exploratory.visualization.clustering_plots.plot_cluster_lines` +# :class:`~skfda.exploratory.visualization.clustering.ClusterMembershipLinesPlot`. # which is similar to parallel coordinates. It is recommended to assign colors # to each of the samples in order to identify them. In this example, the # colors are the ones of the first plot, dividing the samples by climate. @@ -126,8 +125,9 @@ sample_colors=colors_by_climate).plot() ############################################################################## -# Finally, the function -# :func:`~skfda.exploratory.visualization.clustering_plots.plot_cluster_bars` +# Finally, the class +# :class:`~skfda.exploratory.visualization.clustering.ClusterMembershipPlot` +# has a plot method which # returns a barplot. Each sample is designated with a bar which is filled # proportionally to the membership values with the color of each cluster.