-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path__init__.py
268 lines (210 loc) · 8.68 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
from typing import NamedTuple
from torch import Tensor
import torchvision.transforms as T
import torch
import matplotlib.pyplot as plt
to_tensor = T.ToTensor()
to_img = T.ToPILImage()
BACKBONE_ENUM = {
'text': 'context_block',
'latent': 'x_block'
}
def colormap_tensor(colormap, tensor: Tensor):
if (colormap == 'none'):
return tensor.unsqueeze(-1).repeat(1, 1, 3).unsqueeze(0)
# Normalize the tensor to the range [0, 1]
tensor_min = tensor.min()
tensor_max = tensor.max()
tensor_normalized = (tensor - tensor_min) / (tensor_max - tensor_min)
tensor_np = tensor_normalized.numpy()
colormap = plt.get_cmap(colormap)
tensor_colored_np = colormap(tensor_np)
tensor_colored = torch.from_numpy(tensor_colored_np)#tensor_colored_np[:, :, :3])
return tensor_colored
matplotlib_colormaps = plt.colormaps()
class RenderAttentionSpot:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sd3_model": ("MODEL",),
"joint_block": ("INT", {"default": 0, "max": 23}),
"backbone": (["text", "latent"],),
"view": (["query", "key", "value", "all-stacked", "all-interposed"],),
"colormap": (["none", *matplotlib_colormaps],)
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render"
CATEGORY = "SD3 Power Lab/Visualize"
def render(self, sd3_model, joint_block, backbone, view, colormap):
km = sd3_model.model_state_dict()
tensor_location = f'joint_blocks.{joint_block}.{BACKBONE_ENUM[backbone]}.attn.qkv.weight'
attention_tensor: Tensor = None
for k in km:
if tensor_location in k:
attention_tensor = km[k]
if (attention_tensor is None):
raise f"Could not locate attention tensor {tensor_location}"
pre_image_tensor: Tensor = None
q,k,v = (None,None,None)
if (view == 'all-stacked'):
pre_image_tensor: Tensor = attention_tensor
elif (view == 'all-interposed'):
pre_image_tensor= attention_tensor.view(1536, 1536, 3)
else:
q,k,v = torch.split(attention_tensor, 1536)
if (view == 'query'):
pre_image_tensor = q
elif (view == 'key'):
pre_image_tensor = k
elif (view == 'value'):
pre_image_tensor = v
if len(pre_image_tensor.shape) == 3:
return (pre_image_tensor.unsqueeze(0), )
else:
return colormap_tensor(colormap, pre_image_tensor)
def tensor2dToImage(tsr: Tensor):
return (tsr.unsqueeze(-1).repeat((1,1,3)).unsqueeze(0),)
def tensor1dToImage(tsr: Tensor):
return (tsr.unsqueeze(-1).repeat((1,256)).unsqueeze(0),)
def imageTo2dTensor(img: Tensor):
return img.squeeze()[:,:,0].clone()
def imageTo1dTensor(img: Tensor):
return img.squeeze().median(1).values.median(1).values.clone()
class LayerToImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sd3_model": ("MODEL",),
"layer": ("STRING", {"multiline": True, "dynamicPrompts": True})
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render"
CATEGORY = "SD3 Power Lab/Hack"
def render(self, sd3_model, layer):
km = sd3_model.model_state_dict()
tensor_location = layer
tensor: Tensor = None
for k in km:
if tensor_location in k:
tensor = km[k]
if (tensor is None):
raise f"Could not locate tensor {tensor_location}"
if (len(tensor.shape) == 2):
return tensor2dToImage(tensor)
elif (len(tensor.shape) == 1):
return tensor1dToImage(tensor)
elif (len(tensor.shape) == 3 and layer == "diffusion_model.pos_embed"):
return tensor2dToImage(tensor[0])
else:
raise f"It was not possible to extract the specified layer as an image due to its shape of {tensor.shape}"
class ImageIntoLayer:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sd3_model": ("MODEL",),
"layer": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"layer_image": ("IMAGE",),
"patch_strength": ("FLOAT", {"default": 1.0, "max": 1.0, "min": 0.0}),
"model_strength": ("FLOAT", {"default": 0.0, "max": 1.0, "min": 0.0}),
"tensor_dimension": (["2d", "1d", "(1,a,b)"],)
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "SD3 Power Lab/Hack"
def patch(self, sd3_model, layer, layer_image: Tensor, patch_strength, model_strength, tensor_dimension):
m = sd3_model.clone()
km = sd3_model.model_state_dict()
tensor_location = layer
tensor: Tensor = None
key_to_patch = None
for k in km:
if tensor_location in k:
tensor = km[k]
key_to_patch = k
if (tensor is None):
raise f"Could not locate attention tensor {tensor_location}"
if (tensor_dimension == '2d'):
modified_layer = imageTo2dTensor(layer_image)
elif (tensor_dimension == '1d'):
print("The image dimensions before the layerification", layer_image.shape)
modified_layer = imageTo1dTensor(layer_image)
print("The image dimensions AFTER the layerification", modified_layer.shape)
elif (tensor_dimension == '(1,a,b)'):
modified_layer = imageTo2dTensor(layer_image).unsqueeze(0)
m.add_patches({key_to_patch: (modified_layer,)}, patch_strength, model_strength)
return (m,)
class AttentionToImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sd3_model": ("MODEL",),
"joint_block": ("INT", {"default": 0, "max": 23}),
"backbone": (["text", "latent"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "render"
CATEGORY = "SD3 Power Lab/Hack"
def render(self, sd3_model, joint_block, backbone):
km = sd3_model.model_state_dict()
tensor_location = f'joint_blocks.{joint_block}.{BACKBONE_ENUM[backbone]}.attn.qkv.weight'
attention_tensor: Tensor = None
for k in km:
if tensor_location in k:
attention_tensor = km[k]
if (attention_tensor is None):
raise f"Could not locate attention tensor {tensor_location}"
return (attention_tensor.clone().view(1536, 1536, 3).unsqueeze(0),)
class ImageToAttention:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"sd3_model": ("MODEL",),
"joint_block": ("INT", {"default": 0, "max": 23}),
"backbone": (["text", "latent"],),
"attention_image": ("IMAGE",),
"patch_strength": ("FLOAT", {"default": 1.0, "max": 1.0, "min": 0.0}),
"model_strength": ("FLOAT", {"default": 0.0, "max": 1.0, "min": 0.0})
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "SD3 Power Lab/Hack"
def patch(self, sd3_model, joint_block, backbone, attention_image, patch_strength, model_strength):
m = sd3_model.clone()
km = sd3_model.model_state_dict()
tensor_location = f'joint_blocks.{joint_block}.{BACKBONE_ENUM[backbone]}.attn.qkv.weight'
attention_tensor: Tensor = None
key_to_patch = None
for k in km:
if tensor_location in k:
attention_tensor = km[k]
key_to_patch = k
if (attention_tensor is None):
raise f"Could not locate attention tensor {tensor_location}"
modified_attention = attention_image.clone().squeeze(0).view(4608,1536)
m.add_patches({key_to_patch: (modified_attention,)}, patch_strength, model_strength)
return (m,)
NODE_CLASS_MAPPINGS = {
"G370SD3PowerLab_RenderAttention": RenderAttentionSpot,
"G370SD3PowerLab_AttentionToImage": AttentionToImage,
"G370SD3PowerLab_ImageIntoAttention": ImageToAttention,
"G370SD3PowerLab_LayerToImage": LayerToImage,
"G370SD3PowerLab_ImageIntoLayer": ImageIntoLayer
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"G370SD3PowerLab_RenderAttention": "Render SD3 Attention",
"G370SD3PowerLab_AttentionToImage": "SD3 Attention To Image",
"G370SD3PowerLab_ImageIntoAttention": "SD3 Image Into Attention",
"G370SD3PowerLab_LayerToImage": "SD3 Layer to Image",
"G370SD3PowerLab_ImageIntoLayer": "SD3 Image into Layer"
}