-
Notifications
You must be signed in to change notification settings - Fork 371
/
Copy pathwebui.py
245 lines (205 loc) ยท 7.7 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# coding=utf-8
import os
import librosa
import base64
import io
import gradio as gr
import re
import numpy as np
import torch
import torchaudio
from funasr import AutoModel
model = "iic/SenseVoiceSmall"
model = AutoModel(model=model,
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_kwargs={"max_single_segment_time": 30000},
trust_remote_code=True,
)
import re
emo_dict = {
"<|HAPPY|>": "๐",
"<|SAD|>": "๐",
"<|ANGRY|>": "๐ก",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "๐ฐ",
"<|DISGUSTED|>": "๐คข",
"<|SURPRISED|>": "๐ฎ",
}
event_dict = {
"<|BGM|>": "๐ผ",
"<|Speech|>": "",
"<|Applause|>": "๐",
"<|Laughter|>": "๐",
"<|Cry|>": "๐ญ",
"<|Sneeze|>": "๐คง",
"<|Breath|>": "",
"<|Cough|>": "๐คง",
}
emoji_dict = {
"<|nospeech|><|Event_UNK|>": "โ",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "๐",
"<|SAD|>": "๐",
"<|ANGRY|>": "๐ก",
"<|NEUTRAL|>": "",
"<|BGM|>": "๐ผ",
"<|Speech|>": "",
"<|Applause|>": "๐",
"<|Laughter|>": "๐",
"<|FEARFUL|>": "๐ฐ",
"<|DISGUSTED|>": "๐คข",
"<|SURPRISED|>": "๐ฎ",
"<|Cry|>": "๐ญ",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "๐คง",
"<|Breath|>": "",
"<|Cough|>": "๐ท",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"}
event_set = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท",}
def format_str(s):
for sptk in emoji_dict:
s = s.replace(sptk, emoji_dict[sptk])
return s
def format_str_v2(s):
sptk_dict = {}
for sptk in emoji_dict:
sptk_dict[sptk] = s.count(sptk)
s = s.replace(sptk, "")
emo = "<|NEUTRAL|>"
for e in emo_dict:
if sptk_dict[e] > sptk_dict[emo]:
emo = e
for e in event_dict:
if sptk_dict[e] > 0:
s = event_dict[e] + s
s = s + emo_dict[emo]
for emoji in emo_set.union(event_set):
s = s.replace(" " + emoji, emoji)
s = s.replace(emoji + " ", emoji)
return s.strip()
def format_str_v3(s):
def get_emo(s):
return s[-1] if s[-1] in emo_set else None
def get_event(s):
return s[0] if s[0] in event_set else None
s = s.replace("<|nospeech|><|Event_UNK|>", "โ")
for lang in lang_dict:
s = s.replace(lang, "<|lang|>")
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
new_s = " " + s_list[0]
cur_ent_event = get_event(new_s)
for i in range(1, len(s_list)):
if len(s_list[i]) == 0:
continue
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
s_list[i] = s_list[i][1:]
#else:
cur_ent_event = get_event(s_list[i])
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
new_s = new_s[:-1]
new_s += s_list[i].strip().lstrip()
new_s = new_s.replace("The.", " ")
return new_s.strip()
def model_inference(input_wav, language, fs=16000):
# task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")}
language_abbr = {"auto": "auto", "zh": "zh", "en": "en", "yue": "yue", "ja": "ja", "ko": "ko",
"nospeech": "nospeech"}
# task = "Speech Recognition" if task is None else task
language = "auto" if len(language) < 1 else language
selected_language = language_abbr[language]
# selected_task = task_abbr.get(task)
# print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}")
if isinstance(input_wav, tuple):
fs, input_wav = input_wav
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
if len(input_wav.shape) > 1:
input_wav = input_wav.mean(-1)
if fs != 16000:
print(f"audio_fs: {fs}")
resampler = torchaudio.transforms.Resample(fs, 16000)
input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
input_wav = resampler(input_wav_t[None, :])[0, :].numpy()
merge_vad = True #False if selected_task == "ASR" else True
print(f"language: {language}, merge_vad: {merge_vad}")
text = model.generate(input=input_wav,
cache={},
language=language,
use_itn=True,
batch_size_s=60, merge_vad=merge_vad)
print(text)
text = text[0]["text"]
text = format_str_v3(text)
print(text)
return text
audio_examples = [
["example/zh.mp3", "zh"],
["example/yue.mp3", "yue"],
["example/en.mp3", "en"],
["example/ja.mp3", "ja"],
["example/ko.mp3", "ko"],
["example/emo_1.wav", "auto"],
["example/emo_2.wav", "auto"],
["example/emo_3.wav", "auto"],
#["example/emo_4.wav", "auto"],
#["example/event_1.wav", "auto"],
#["example/event_2.wav", "auto"],
#["example/event_3.wav", "auto"],
["example/rich_1.wav", "auto"],
["example/rich_2.wav", "auto"],
#["example/rich_3.wav", "auto"],
["example/longwav_1.wav", "auto"],
["example/longwav_2.wav", "auto"],
["example/longwav_3.wav", "auto"],
#["example/longwav_4.wav", "auto"],
]
html_content = """
<div>
<h2 style="font-size: 22px;margin-left: 0px;">Voice Understanding Model: SenseVoice-Small</h2>
<p style="font-size: 18px;margin-left: 20px;">SenseVoice-Small is an encoder-only speech foundation model designed for rapid voice understanding. It encompasses a variety of features including automatic speech recognition (ASR), spoken language identification (LID), speech emotion recognition (SER), and acoustic event detection (AED). SenseVoice-Small supports multilingual recognition for Chinese, English, Cantonese, Japanese, and Korean. Additionally, it offers exceptionally low inference latency, performing 7 times faster than Whisper-small and 17 times faster than Whisper-large.</p>
<h2 style="font-size: 22px;margin-left: 0px;">Usage</h2> <p style="font-size: 18px;margin-left: 20px;">Upload an audio file or input through a microphone, then select the task and language. the audio is transcribed into corresponding text along with associated emotions (๐ happy, ๐ก angry/exicting, ๐ sad) and types of sound events (๐ laughter, ๐ผ music, ๐ applause, ๐คง cough&sneeze, ๐ญ cry). The event labels are placed in the front of the text and the emotion are in the back of the text.</p>
<p style="font-size: 18px;margin-left: 20px;">Recommended audio input duration is below 30 seconds. For audio longer than 30 seconds, local deployment is recommended.</p>
<h2 style="font-size: 22px;margin-left: 0px;">Repo</h2>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/SenseVoice" target="_blank">SenseVoice</a>: multilingual speech understanding model</p>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/modelscope/FunASR" target="_blank">FunASR</a>: fundamental speech recognition toolkit</p>
<p style="font-size: 18px;margin-left: 20px;"><a href="https://github.com/FunAudioLLM/CosyVoice" target="_blank">CosyVoice</a>: high-quality multilingual TTS model</p>
</div>
"""
def launch():
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# gr.Markdown(description)
gr.HTML(html_content)
with gr.Row():
with gr.Column():
audio_inputs = gr.Audio(label="Upload audio or use the microphone")
with gr.Accordion("Configuration"):
language_inputs = gr.Dropdown(choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
value="auto",
label="Language")
fn_button = gr.Button("Start", variant="primary")
text_outputs = gr.Textbox(label="Results")
gr.Examples(examples=audio_examples, inputs=[audio_inputs, language_inputs], examples_per_page=20)
fn_button.click(model_inference, inputs=[audio_inputs, language_inputs], outputs=text_outputs)
demo.launch()
if __name__ == "__main__":
# iface.launch()
launch()