-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrecursive.erl
135 lines (106 loc) · 4.24 KB
/
recursive.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
-module(recursive).
-export([fac/1, tail_fac/1, len/1, tail_len/1, duplicate/2,
tail_duplicate/2, reverse/1, tail_reverse/1, sublist/2,
tail_sublist/2, zip/2, lenient_zip/2, tail_zip/2,
tail_lenient_zip/2]).
-export([quicksort/1, lc_quicksort/1, bestest_qsort/1]).
%% basic recursive factorial function
fac(0) -> 1;
fac(N) when N > 0 -> N*fac(N-1).
%% tail recursive version of fac/1
tail_fac(N) -> tail_fac(N,1).
tail_fac(0,Acc) -> Acc;
tail_fac(N,Acc) when N > 0 -> tail_fac(N-1,N*Acc).
%% finds the len of a list
len([]) -> 0;
len([_|T]) -> 1 + len(T).
%% tail recursive version of len/1
tail_len(L) -> tail_len(L,0).
tail_len([], Acc) -> Acc;
tail_len([_|T], Acc) -> tail_len(T,Acc+1).
%% duplicates Term N times
duplicate(0,_) ->
[];
duplicate(N,Term) when N > 0 ->
[Term|duplicate(N-1,Term)].
%% tail recursive version of duplicate/2
tail_duplicate(N,Term) ->
tail_duplicate(N,Term,[]).
tail_duplicate(0,_,List) ->
List;
tail_duplicate(N,Term,List) when N > 0 ->
tail_duplicate(N-1, Term, [Term|List]).
%% reverses a list (a truly descriptive function name!)
reverse([]) -> [];
reverse([H|T]) -> reverse(T)++[H].
%% tail recursive version of reverse/1
tail_reverse(L) -> tail_reverse(L,[]).
tail_reverse([],Acc) -> Acc;
tail_reverse([H|T],Acc) -> tail_reverse(T, [H|Acc]).
%% returns the N first elements of a list
sublist(_,0) -> [];
sublist([],_) -> [];
sublist([H|T],N) when N > 0 -> [H|sublist(T,N-1)].
%% tail recursive version of sublist/2
tail_sublist(L, N) -> reverse(tail_sublist(L, N, [])).
tail_sublist(_, 0, SubList) -> SubList;
tail_sublist([], _, SubList) -> SubList;
tail_sublist([H|T], N, SubList) when N > 0 ->
tail_sublist(T, N-1, [H|SubList]).
%% Takes two lists [A] and [B] and returns a list of tuples
%% with the form [{A,B}]. Both lists need to be of same lenght.
zip([],[]) -> [];
zip([X|Xs],[Y|Ys]) -> [{X,Y}|zip(Xs,Ys)].
%% Same as zip/2, but lists can vary in lenght
lenient_zip([],_) -> [];
lenient_zip(_,[]) -> [];
lenient_zip([X|Xs],[Y|Ys]) -> [{X,Y}|lenient_zip(Xs,Ys)].
%% tail recursive version of zip/2
tail_zip(X,Y) -> reverse(tail_zip(X,Y,[])).
tail_zip([],[],Acc) -> Acc;
tail_zip([X|Xs],[Y|Ys], Acc) ->
tail_zip(Xs,Ys, [{X,Y}|Acc]).
%% tail recursive version of lenient-zip/2
tail_lenient_zip(X,Y) -> reverse(tail_lenient_zip(X,Y,[])).
tail_lenient_zip([],_,Acc) -> Acc;
tail_lenient_zip(_,[],Acc) -> Acc;
tail_lenient_zip([X|Xs],[Y|Ys], Acc) ->
tail_lenient_zip(Xs,Ys,[{X,Y}|Acc]).
%% basic quicksort function.
quicksort([]) -> [];
quicksort([Pivot|Rest]) ->
{Smaller, Larger} = partition(Pivot,Rest,[],[]),
quicksort(Smaller) ++ [Pivot] ++ quicksort(Larger).
partition(_,[], Smaller, Larger) -> {Smaller, Larger};
partition(Pivot, [H|T], Smaller, Larger) ->
if H =< Pivot -> partition(Pivot, T, [H|Smaller], Larger);
H > Pivot -> partition(Pivot, T, Smaller, [H|Larger])
end.
%% quicksort built with list comprehensions rather than with a
%% partition function.
lc_quicksort([]) -> [];
lc_quicksort([Pivot|Rest]) ->
lc_quicksort([Smaller || Smaller <- Rest, Smaller =< Pivot])
++ [Pivot] ++
lc_quicksort([Larger || Larger <- Rest, Larger > Pivot]).
%% BESTEST QUICKSORT, YEAH!
%% (This is not really the bestest quicksort, because we do not do
%% adequate pivot selection. It is the bestest of this book, alright?
%% Thanks to literateprograms.org for this example. Give them a visit!
%% http://en.literateprograms.org/Quicksort_(Erlang) )
bestest_qsort([]) -> [];
bestest_qsort(L=[_|_]) ->
bestest_qsort(L, []).
bestest_qsort([], Acc) -> Acc;
bestest_qsort([Pivot|Rest], Acc) ->
bestest_partition(Pivot, Rest, {[], [Pivot], []}, Acc).
bestest_partition(_, [], {Smaller, Equal, Larger}, Acc) ->
bestest_qsort(Smaller, Equal ++ bestest_qsort(Larger, Acc));
bestest_partition(Pivot, [H|T], {Smaller, Equal, Larger}, Acc) ->
if H < Pivot ->
bestest_partition(Pivot, T, {[H|Smaller], Equal, Larger}, Acc);
H > Pivot ->
bestest_partition(Pivot, T, {Smaller, Equal, [H|Larger]}, Acc);
H == Pivot ->
bestest_partition(Pivot, T, {Smaller, [H|Equal], Larger}, Acc)
end.