-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
339 lines (300 loc) · 16.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import sys
from copy import deepcopy
from pprint import pformat
from typing import Callable, Optional, Tuple
import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
from matplotlib.colors import ListedColormap
from torch.nn.parallel import DistributedDataParallel as DDP
from models import VectorQuantizer, VQVAE, DinoDisc
from utils import arg_util, misc, nan
from utils.amp_opt import AmpOptimizer
from utils.diffaug import DiffAug
from utils.loss import hinge_loss, linear_loss, softplus_loss
from utils.lpips import LPIPS
# from memory_profiler import profile
FTen = torch.Tensor
ITen = torch.LongTensor
BTen = torch.BoolTensor
class VAETrainer(object):
def __init__(
self, is_visualizer: bool,
vae: DDP, vae_wo_ddp: VQVAE, disc: DDP, disc_wo_ddp: DinoDisc, ema_ratio: float, # decoder, en_de_lin=True, seg_embed=False,
dcrit: str, vae_opt: AmpOptimizer, disc_opt: AmpOptimizer,
daug=1.0, lpips_loss: LPIPS = None, lp_reso=64, wei_l1=1.0, wei_l2=0.0, wei_entropy=0.0, wei_lpips=0.5, wei_disc=0.6, adapt_type=1, bcr=5.0, bcr_cut=0.5, reg=0.0, reg_every=16,
disc_grad_ckpt=False,
dbg_unused=False, dbg_nan=False,
):
super(VAETrainer, self).__init__()
self.dbg_unused, self.dbg_nan = dbg_unused, dbg_nan
if self.dbg_nan:
print('[dbg_nan mode on]')
nan.debug_nan_hook(vae)
nan.debug_nan_hook(disc)
self.vae, self.disc = vae, disc
self.vae_opt, self.disc_opt = vae_opt, disc_opt
self.vae_wo_ddp: VQVAE = vae_wo_ddp # after torch.compile
self.disc_wo_ddp: DinoDisc = disc_wo_ddp # after torch.compile
self.vae_params: Tuple[nn.Parameter] = tuple(self.vae_wo_ddp.parameters())
self.disc_params: Tuple[nn.Parameter] = tuple(self.disc_wo_ddp.parameters())
self.ema_ratio = ema_ratio
self.is_visualizer = is_visualizer
self.using_ema = is_visualizer
if self.using_ema:
self.vae_ema: VQVAE = deepcopy(vae_wo_ddp).eval()
else:
self.vae_ema: VQVAE = None
self.cmap_sim: ListedColormap = sns.color_palette('viridis', as_cmap=True)
self.dcrit = dcrit
self.d_criterion: Callable = { # 'hg' by default
'hg': hinge_loss, 'hinge': hinge_loss,
'sp': softplus_loss, 'softplus': softplus_loss,
'ln': linear_loss, 'lin': linear_loss, 'linear': linear_loss
}[dcrit]
self.daug = DiffAug(prob=daug, cutout=0.2)
self.wei_l1, self.wei_l2, self.wei_entropy = wei_l1, wei_l2, wei_entropy
self.lpips_loss: LPIPS = lpips_loss
self.lp_reso = lp_reso
self.adapt_wei_disc = wei_disc > 0
self.adapt_type = adapt_type
self.ema_gada: torch.Tensor = None
self.wei_lpips, self.wei_disc = wei_lpips*2, abs(wei_disc)
self.reg = 0.5 * reg * reg_every
# balanced_consistency_regularization, 10.0 is used by StyleSwin
self.bcr = bcr * 2 # LEGACY *2: in the old version, bcr MSE losses on real/fake images are calculated separately and added up; so *2 in the new version
if self.bcr > 0:
self.bcr_strong_aug = DiffAug(prob=1, cutout=bcr_cut)
self.disc_grad_ckpt = disc_grad_ckpt
# @profile(precision=4, stream=open('trainstep.log', 'w+'))
def train_step(
self, ep: int, it: int, g_it: int, stepping: bool, regularizing: bool, metric_lg: misc.MetricLogger, logging_params: bool, tb_lg: misc.TensorboardLogger,
inp: FTen, warmup_disc_schedule: float, fade_blur_schedule: float,
maybe_record_function: Callable,
args: arg_util.Args,
) -> Tuple[torch.Tensor, Optional[float], Optional[torch.Tensor], Optional[float]]:
if warmup_disc_schedule < 1e-6: warmup_disc_schedule = 0
if fade_blur_schedule < 1e-6: fade_blur_schedule = 0
loggable = (g_it == 0 or (g_it + 1) % 600 == 0) and self.is_visualizer
# [vae loss]
with maybe_record_function('VAE_rec'):
with self.vae_opt.amp_ctx:
self.vae_wo_ddp.forward
rec_B3HW, Lq, Le, usage = self.vae(inp, ret_usages=loggable)
B = rec_B3HW.shape[0]
inp_rec_no_grad = torch.cat((inp, rec_B3HW.data), dim=0)
Lrec = F.l1_loss(rec_B3HW, inp)
Lrec_for_log = Lrec.data.clone()
Lrec *= self.wei_l1
if self.wei_l2 > 0:
Lrec += F.mse_loss(rec_B3HW, inp).mul_(self.wei_l2)
# if self.wei_llaplace > 0:
# inp_01_09 = inp.mul(0.4).add_(0.5)
# dist = (rec_B3HW.sigmoid() - inp_01_09.sigmoid()).abs()
# # dist /= lnb.exp().square().mul_(inp_01_09.add(inp_01_09).mul_(1-inp_01_09)).add_(1).mul_(0.5)
# dist /= inp_01_09.add(inp_01_09).mul_(1-inp_01_09).add_(1).mul_(0.5)
# Lrec += dist.mean().mul_(self.wei_llaplace)
using_lpips = inp.shape[-2] >= self.lp_reso and self.wei_lpips > 0
if using_lpips:
self.lpips_loss.forward
Lpip = self.lpips_loss(inp, rec_B3HW)
Lnll = Lrec + self.wei_lpips * Lpip
else:
Lpip = torch.tensor(0.)
Lnll = Lrec
if warmup_disc_schedule > 0:
with maybe_record_function('VAE_disc'):
for d in self.disc_params: d.requires_grad = False
self.disc_wo_ddp.eval()
with self.disc_opt.amp_ctx:
self.disc_wo_ddp.forward
Lg = -self.disc_wo_ddp(self.daug.aug(rec_B3HW, fade_blur_schedule), grad_ckpt=False).mean() # todo: aug or not?
self.disc_wo_ddp.train()
wei_g = warmup_disc_schedule * self.wei_disc
if self.adapt_wei_disc:
last_layer = self.vae_wo_ddp.decoder.conv_out.weight
w = (
torch.autograd.grad(Lnll, last_layer, retain_graph=True)[0].data.norm()
/ (torch.autograd.grad(Lg, last_layer, retain_graph=True)[0].data.norm().add_(1e-6))
)
if self.adapt_type % 10 == 0:
w.clamp_(0.0, 1e4)
elif self.adapt_type % 10 == 1:
w.clamp_(0.015, 1e4)
elif self.adapt_type % 10 == 2:
w.clamp_(0.1, 10)
w = min(max(w, 0.1), 10)
elif self.adapt_type % 10 == 3:
w.clamp_(0.0, 1e4).sqrt_()
if self.adapt_type >= 10:
if self.ema_gada is None:
self.ema_gada = w
else:
self.ema_gada.mul_(0.9).add_(w, alpha=0.1)
w = self.ema_gada
wei_g = wei_g * w
Lv = Lnll + Lq + self.wei_entropy * Le + wei_g * Lg
else:
Lv = Lnll + Lq + self.wei_entropy * Le
Lg = torch.tensor(0.)
wei_g = None
# todo: G D backward together; less calling .item()
# todo: G D backward together; less calling .item()
with maybe_record_function('VAE_backward'):
grad_norm_g, scale_log2_g = self.vae_opt.backward_clip_step(stepping=stepping, loss=Lv)
# [discriminator loss]
if warmup_disc_schedule > 0:
with maybe_record_function('Disc_forward'):
for d in self.disc_params: d.requires_grad = True
with self.disc_opt.amp_ctx:
self.disc_wo_ddp.forward
logits = self.disc(self.daug.aug(inp_rec_no_grad, fade_blur_schedule), grad_ckpt=self.disc_grad_ckpt).float()
logits_real, logits_fake = logits[:B], logits[B:]
acc_real, acc_fake = (logits_real.data > 0).float().mean().mul_(100), (logits_fake.data < 0).float().mean().mul_(100)
Ld = self.d_criterion(logits_real) + self.d_criterion(-logits_fake)
if self.bcr:
with maybe_record_function('Disc_bCR'):
with self.disc_opt.amp_ctx:
self.disc_wo_ddp.forward
logits2 = self.disc(self.bcr_strong_aug.aug(inp_rec_no_grad, 0.0), grad_ckpt=self.disc_grad_ckpt).float()
Lbcr = F.mse_loss(logits2, logits).mul_(self.bcr)
Ld += Lbcr
else:
Lbcr = torch.tensor(0.)
if regularizing:
with maybe_record_function('Disc_reg'):
self.disc_wo_ddp.eval()
with torch.cuda.amp.autocast(enabled=False): # todo: why AMP is disabled in this disc forward?
inp.requires_grad_(True)
self.disc_wo_ddp.forward
grad_real = torch.autograd.grad(outputs=self.disc(self.daug.aug(inp, fade_blur_schedule), grad_ckpt=False).sum(), inputs=inp, create_graph=True)[0]
Lreg = grad_real.square().flatten(1).sum(dim=1).mean()
Ld += self.reg * Lreg
Lreg = Lreg.item()
inp.requires_grad_(False)
self.disc_wo_ddp.train()
else:
Lreg = 0.
with maybe_record_function('Disc_backward'):
grad_norm_d, scale_log2_d = self.disc_opt.backward_clip_step(stepping=stepping, loss=Ld)
Ld = Ld.data.clone()
else:
Ld = acc_real = acc_fake = grad_norm_d = scale_log2_d = None
Lbcr = torch.tensor(0.)
# [zero_grad]
if stepping:
if self.using_ema:
with maybe_record_function('EMA_upd'):
self.ema_update(g_it)
if self.dbg_nan:
nan.debug_nan_grad(self.vae_wo_ddp), nan.debug_nan_grad(self.disc_wo_ddp)
nan.debug_nan_param(self.vae_wo_ddp), nan.debug_nan_param(self.disc_wo_ddp)
if self.dbg_unused:
ls = []
for n, p in self.vae_wo_ddp.named_parameters():
if p.grad is None and n not in {'quantize.embedding.weight'}: # or tuple(p.grad.shape) == (512, 512, 1, 1):
ls.append(n)
for n, p in self.disc_wo_ddp.named_parameters():
if p.grad is None: # or tuple(p.grad.shape) == (512, 512, 1, 1):
ls.append(n)
if len(ls):
print(f'unused param: {ls}', flush=True, file=sys.stderr)
with maybe_record_function('opt_step'):
self.vae_opt.optimizer.zero_grad(set_to_none=True)
self.disc_opt.optimizer.zero_grad(set_to_none=True)
with maybe_record_function('trainer_log'):
# [metric logging]
if it == 0 or it in metric_lg.log_iters:
Lpip = Lpip.item()
Lnll = Lrec_for_log + Lpip
metric_lg.update(L1=Lrec_for_log, NLL=Lnll, Ld=Ld, Wg=wei_g, acc_real=acc_real, acc_fake=acc_fake, gnm=grad_norm_g, dnm=grad_norm_d)
# [tensorboard logging]
if loggable:
Lbcr, Lq, Le, Lg = Lbcr.item(), Lq.item(), Le if isinstance(Le, (int, float)) else Le.item(), Lg.item()
# vae_vocab_size = self.vae_wo_ddp.vocab_size
# prob_per_class_is_chosen = idx_N.bincount()
# prob_per_class_is_chosen = F.pad(prob_per_class_is_chosen, pad=(0, vae_vocab_size-prob_per_class_is_chosen.shape[0]), mode='constant', value=0).float() / prob_per_class_is_chosen.sum()
# log_perplexity = (-(prob_per_class_is_chosen * torch.log(prob_per_class_is_chosen + 1e-10)).sum())
# cluster_usage = (prob_per_class_is_chosen > 0.05 / vae_vocab_size).float().mean() * 100
kw = dict(
# total=Lnll + Lq + self.wei_disc * Lg,
Nll=Lnll, RecL1=Lrec_for_log, quant=Lq,
# z_log_perplex=log_perplexity, z_voc_usage=cluster_usage
)
kw[f'z_voc_usage'] = usage
if Le > 1e-6: kw['entropy'] = Le
if Lpip > 1e-6: kw['Lpip'] = Lpip
tb_lg.update(head='PT_iter_V_loss', step=g_it, **kw)
if warmup_disc_schedule > 0:
kw = dict(Disc=Ld-Lbcr-Lreg, bcr=Lbcr, give_vae=Lg)
if Lreg > 1e-6: kw['regR1'] = Lreg
tb_lg.update(head='PT_iter_D_loss', step=g_it, **kw)
tb_lg.update(
head='PT_iter_pred',
logits_real=logits_real.data.mean(), logits_fake=logits_fake.data.mean(),
logits_L1dis_normed=F.l1_loss(logits_real.data, logits_fake.data).mul_(3.0178) / (logits_real.data.abs().mean() + logits_fake.data.abs().mean()),
acc_real=acc_real, acc_fake=acc_fake, step=g_it
)
tb_lg.update(head='PT_iter_schedule', warm_disc=warmup_disc_schedule, fade_blur=fade_blur_schedule, step=g_it)
return grad_norm_g, scale_log2_g, grad_norm_d, scale_log2_d
def __repr__(self):
return (
f'\n'
f'[{type(self).__name__}.config]: {pformat(self.get_config(), indent=2, width=250)}\n'
f'[{type(self).__name__}.structure]: {super(VAETrainer, self).__repr__().replace(VAETrainer.__name__, "")}'
)
# p_ema = p_ema*0.9 + p*0.1 <==> p_ema.lerp_(p, 0.1)
# p_ema.mul_(self.ema_ratio).add_(p.mul(self.ema_ratio_1))
# @profile(precision=4, stream=open('ema_update.log', 'w+'))
def ema_update(self, g_it):
ema_ratio = min(self.ema_ratio, (g_it//2 + 1) / (g_it//2 + 10))
for p_ema, p in zip(self.vae_ema.parameters(), self.vae_wo_ddp.parameters()):
if p.requires_grad:
p_ema.data.mul_(ema_ratio).add_(p.data, alpha=1-ema_ratio)
for p_ema, p in zip(self.vae_ema.buffers(), self.vae_wo_ddp.buffers()):
p_ema.data.copy_(p.data)
quant, quant_ema = self.vae_wo_ddp.quantize, self.vae_ema.quantize
quant: VectorQuantizer
if hasattr(quant, 'using_ema') and quant.using_ema: # then embedding.weight requires no grad, thus is not in self.vae_ema_params; so need to update it manually
if hasattr(quant, 'using_restart') and quant.using_restart:
# cannot use ema, cuz quantize.embedding uses replacement (rand restart)
quant_ema.embedding.weight.data.copy_(quant.embedding.weight.data)
else:
quant_ema.embedding.weight.data.mul_(ema_ratio).add_(quant.embedding.weight.data, alpha=1-ema_ratio)
def get_config(self):
return {
'ema_ratio': self.ema_ratio,
'dcrit': self.dcrit,
'wei_l1': self.wei_l1, 'wei_l2': self.wei_l2, 'wei_lpips': self.wei_lpips, 'wei_disc': self.wei_disc,
'bcr': self.bcr, 'reg': self.reg,
}
def state_dict(self):
state = {'config': self.get_config()}
for k in ('vae_wo_ddp', 'vae_ema', 'disc_wo_ddp', 'vae_opt', 'disc_opt'):
m = getattr(self, k)
if m is not None:
if hasattr(m, '_orig_mod'):
m = m._orig_mod
state[k] = m.state_dict()
return state
def load_state_dict(self, state, strict=True):
for k in ('vae_wo_ddp', 'vae_ema', 'disc_wo_ddp', 'vae_opt', 'disc_opt'):
m = getattr(self, k)
if m is not None:
if hasattr(m, '_orig_mod'):
m = m._orig_mod
ret = m.load_state_dict(state[k], strict=strict)
if ret is not None:
missing, unexpected = ret
print(f'[VAETr.load_state_dict] {k} missing: {missing}')
print(f'[VAETr.load_state_dict] {k} unexpected: {unexpected}')
config: dict = state.pop('config', None)
if config is not None:
for k, v in self.get_config().items():
if config.get(k, None) != v:
err = f'[VAETr.load_state_dict] config mismatch: this.{k}={v} (ckpt.{k}={config.get(k, None)})'
if strict:
raise AttributeError(err)
else:
print(err)