-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup_help.txt
40 lines (34 loc) · 2.14 KB
/
setup_help.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Guid to the net_params.json
=======
# Trajectory encoder config
"traj_input_size": 4, # trajectory encoder input size (size of each bounding box=[xc,yc,w,h])
"traj_hidden_size": 4, # feature dimention in the hidden state for the LSTM encoder
"traj_num_layer": 1, # number of LSTM stacks
"traj_emb_encod": false, # whether to use FC layer after the LSTM stacks
"traj_out_size": 256, # size of the output FC layer after the LSTM stacks
# Motion encoder config
"mot_map_size": 10, # feature map input size (each map will be 10*10*2 after the roi-pooling)
"mot_filter1_size": 16, # number of filters in the first ConvLSTM cell
"mot_filter2_size": 8, # number of filters in the second ConvLSTM cell
"mot_out_size": 512, # size of the output FC layer (if used before concatination)
"mot_num_layer": 2, # number of recurrent stacks
"mot_use_MLP": false, # whether to use FC layer after the LSTM stacks
# Contextual encoder config
"con_image_size": 224, # image size
"con_filter1_size": 32, # number of filters in the first ConvLSTM cell
"con_filter2_size": 16, # number of filters in the second ConvLSTM cell
"con_out_size": 1024, # size of the output FC layer (if used before concatination)
"con_num_layer": 2, # number of recurrent stacks
"con_use_MLP": false, # whether to use FC layer after the LSTM stacks
"encoder_mlp": 1024, # size of the concatination FC layer
"decoder_input_dim": 512, # size of the decoder input (must be half of the "encoder_mlp")
"decoder_hidden_dim": 1024, # size of the hidden state in the LSTM decoder
"decoder_mlp_size": 256, # size of the FC layer before concatinating the odometery with each new input
"prediction_length": 30, # length of the prediction
"roi_size": 10, # desired size after roi-pooling (must be equal to the "mot_map_size")
"exp_num": 5, # experiment number (just for log saving)
"cuda": true, # whether to use GPU or not
"learning_rate": 1e-3, # learning rate
"batch_size": 2, # batch size
"save_summary_steps": 100, # save train summary every n steps
"num_steps": 2500 # number of epochs in train job