-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathAutoencoder.py
159 lines (141 loc) · 4.57 KB
/
Autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import matplotlib.pyplot as plt
import numpy as np
from keras import Input, Model
from keras import backend as K
from keras.backend import tf
from keras.layers import Lambda
from pygsp import graphs
from spektral.layers import GraphConvSkip
from spektral.layers import MinCutPool
from spektral.utils.convolution import normalized_adjacency
from tqdm import tqdm
from utils.misc import sp_matrix_to_sp_tensor_value, get_sw_key
def upsampling_from_mask(inputs):
X_, A_, I_, M_ = inputs
S_ = tf.eye(tf.shape(M_)[0])
S_ = tf.boolean_mask(S_, M_)
S_t_ = tf.transpose(S_)
X_out_ = K.dot(S_t_, X_)
A_out_ = K.dot(K.transpose(K.dot(A_, S_)), S_)
I_out_ = K.dot(
S_t_,
K.cast(I_[:, None], tf.float32)
)[:, 0]
I_out_ = K.cast(I_out_, tf.int32)
return [X_out_, A_out_, I_out_]
def upsampling_from_matrix(inputs):
X_, A_, I_, S_ = inputs
X_out_ = K.dot(S_, X_)
A_out_ = K.dot(S_, K.transpose(K.dot(S_, A_, )))
I_out_ = K.dot(
S_,
K.cast(I_[:, None], tf.float32)
)[:, 0]
I_out_ = K.cast(I_out_, tf.int32)
return [X_out_, A_out_, I_out_]
upsampling_from_mask_op = Lambda(upsampling_from_mask)
upsampling_from_matrix_op = Lambda(upsampling_from_matrix)
# HYPERPARAMS
ITER = 10000
ACTIV = 'tanh'
dataset = 'grid'
gnn_channels = 32
es_patience = 1000
# LOAD DATASET
if dataset == 'ring':
G = graphs.Ring(N=200)
elif dataset == 'grid':
G = graphs.Grid2d(N1=30, N2=30)
X = G.coords.astype(np.float32)
A = G.W
y = np.zeros(X.shape[0]) # X[:,0] + X[:,1]
n_classes = np.unique(y).shape[0]
n_feat = X.shape[-1]
n_nodes = A.shape[0]
# MODEL DEFINITION
X_in = Input(tensor=tf.placeholder(tf.float32, shape=(None, n_feat), name='X_in'))
A_in = Input(tensor=tf.sparse_placeholder(tf.float32, shape=(None, None)), name='A_in')
I_in = Input(tensor=tf.placeholder(tf.int32, shape=(None,), name='segment_ids_in'))
X_target = Input(tensor=tf.placeholder(tf.float32, shape=(None, n_feat), name='X_target'))
A_target = Input(tensor=tf.sparse_placeholder(tf.float32, shape=(None, None)), name='A_target')
A = normalized_adjacency(A)
n_out = X.shape[-1]
# encoder
X1 = GraphConvSkip(gnn_channels, activation=ACTIV)([X_in, A_in])
X1 = GraphConvSkip(gnn_channels, activation=ACTIV)([X1, A_in])
# pooling
X2, A2, I2, M2 = MinCutPool(k=n_nodes // 4, h=gnn_channels)([X1, A_in, I_in])
# unpooling
X3, A3, I3 = upsampling_from_matrix_op([X2, A2, I2, M2])
# decoder
X3 = GraphConvSkip(gnn_channels, activation=ACTIV)([X3, A_in])
X3 = GraphConvSkip(gnn_channels, activation=ACTIV)([X3, A_in])
X3 = GraphConvSkip(n_out)([X3, A_in])
model = Model([X_in, A_in, I_in], [X3])
model.compile('adam', 'mse', target_tensors=[X_target])
# TRAINING
sess = K.get_session()
loss = model.total_loss
opt = tf.train.AdamOptimizer(learning_rate=5e-3)
train_step = opt.minimize(loss)
# Initialize all variables
init_op = tf.global_variables_initializer()
sess.run(init_op)
# Fit layer
tr_feed_dict = {X_in: X,
A_in: sp_matrix_to_sp_tensor_value(A),
I_in: y,
X_target: X,
get_sw_key(sess): np.ones(1)}
layer_out = []
patience = es_patience
best_loss = np.inf
tol = 1e-5
iterator = tqdm(range(ITER))
try:
for _ in iterator:
outs = sess.run([train_step, loss], feed_dict=tr_feed_dict)
layer_out.append(outs[1])
if outs[1] + tol < best_loss:
best_loss = outs[1]
patience = es_patience
model.save_weights('best.h5')
else:
patience -= 1
if patience == 0:
iterator.close()
break
except KeyboardInterrupt:
print('training interrupted!')
# Evaluate
model.load_weights('best.h5')
pred = sess.run([model.output], feed_dict=tr_feed_dict)[0]
mask = sess.run([M2], feed_dict=tr_feed_dict)[0]
output = {'loss': layer_out, 'pred': pred, 'mask': mask}
lss_ = sess.run([model.total_loss], feed_dict=tr_feed_dict)[0]
print('MSE', lss_)
K.clear_session()
# PLOTS
plt.plot(output['loss'])
plt.title('Loss')
plt.figure(figsize=(8, 4))
pad = 0.1
x_min, x_max = X[:, 0].min() - pad, X[:, 0].max() + pad
y_min, y_max = X[:, 1].min() - pad, X[:, 1].max() + pad
colors = X[:, 0] + X[:, 1]
plt.subplot(1, 2, 1)
plt.scatter(*X[:, :2].T, c=colors, s=8, zorder=2)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.title('Original')
plt.axvline(0, c='k', alpha=0.2)
plt.axhline(0, c='k', alpha=0.2)
plt.subplot(1, 2, 2)
plt.scatter(*output['pred'][:, :2].T, c=colors, s=8, zorder=2)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.title('Reconstructed')
plt.axvline(0, c='k', alpha=0.2)
plt.axhline(0, c='k', alpha=0.2)
plt.tight_layout()
plt.show()