-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQEC Graph FPGA.py
127 lines (106 loc) · 3.99 KB
/
QEC Graph FPGA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import networkx as nx
import numpy as np
import random
from scipy.optimize import linear_sum_assignment
# --- Dynamic Graph Algorithm Implementation ---
def update_graph(graph, new_edges):
"""Dynamically update the graph with new edges."""
for edge in new_edges:
u, v, weight = edge
if graph.has_edge(u, v):
graph[u][v]['weight'] = weight
else:
graph.add_edge(u, v, weight=weight)
return graph
# Example graph creation and dynamic updates
graph = nx.Graph()
graph.add_weighted_edges_from([(0, 1, 1.0), (1, 2, 2.0), (2, 3, 3.0)])
new_edges = [(1, 3, 0.5), (3, 0, 1.2)]
graph = update_graph(graph, new_edges)
# --- Graph-Based Matching Algorithms ---
def hopcroft_karp(graph):
"""Hopcroft-Karp implementation for maximum matching."""
matching = nx.bipartite.maximum_matching(graph)
return matching
# Example matching
bipartite_graph = nx.complete_bipartite_graph(3, 3)
matching = hopcroft_karp(bipartite_graph)
print("Matching:", matching)
# --- Min-Cut/Max-Flow Algorithms ---
def max_flow(graph, source, sink):
"""Edmonds-Karp algorithm for max flow."""
flow_value, flow_dict = nx.maximum_flow(graph, source, sink)
return flow_value, flow_dict
# Example max-flow
flow_graph = nx.DiGraph()
flow_graph.add_weighted_edges_from([(0, 1, 3), (1, 2, 2), (0, 2, 1)])
max_flow_value, max_flow_dict = max_flow(flow_graph, 0, 2)
print("Max Flow Value:", max_flow_value)
# --- Machine Learning Integration ---
from sklearn.ensemble import RandomForestClassifier
class AdaptiveDecoder:
def __init__(self):
self.model = RandomForestClassifier()
self.error_data = []
self.labels = []
def train(self, error_patterns, labels):
self.error_data.extend(error_patterns)
self.labels.extend(labels)
self.model.fit(self.error_data, self.labels)
def predict(self, new_pattern):
return self.model.predict([new_pattern])
# Example adaptive learning
decoder = AdaptiveDecoder()
error_patterns = np.random.rand(10, 5)
labels = np.random.randint(0, 2, 10)
decoder.train(error_patterns, labels)
new_error = np.random.rand(1, 5)
print("Predicted Correction:", decoder.predict(new_error))
# --- FPGA Implementation (VHDL Snippet for Error Correction) ---
FPGA_CODE = """
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity ErrorCorrection is
Port (
clk : in STD_LOGIC;
error_in : in STD_LOGIC_VECTOR(7 downto 0);
correction_out : out STD_LOGIC_VECTOR(7 downto 0)
);
end ErrorCorrection;
architecture Behavioral of ErrorCorrection is
begin
process(clk)
begin
if rising_edge(clk) then
correction_out <= not error_in; -- Simple example logic
end if;
end process;
end Behavioral;
"""
# Save FPGA code to a file
with open("error_correction.vhdl", "w") as file:
file.write(FPGA_CODE)
print("FPGA VHDL code saved to 'error_correction.vhdl'")
# --- End-to-End Implementation Based on Proposal ---
# Proposal Objectives Addressed:
# 1. Dynamic Graph Algorithms: Implemented `update_graph` function to modify graph structure in real-time.
# 2. Graph-Based Matching: Used `hopcroft_karp` for efficient maximum matching.
# 3. Min-Cut/Max-Flow: Provided `max_flow` to handle flow-based computations in graphs.
# 4. Machine Learning: Created `AdaptiveDecoder` to integrate learning from error patterns.
# 5. FPGA Implementation: Supplied VHDL code for hardware-based error correction.
# Integration and Testing
# Dynamic graph update example
graph = update_graph(graph, [(3, 4, 2.5), (4, 5, 1.5)])
print("Updated Graph Edges:", graph.edges(data=True))
# Matching example
matching = hopcroft_karp(bipartite_graph)
print("Updated Matching:", matching)
# Max-Flow example
max_flow_value, max_flow_dict = max_flow(flow_graph, 0, 2)
print("Updated Max Flow:", max_flow_value)
# Adaptive decoding example
new_error = np.random.rand(1, 5)
prediction = decoder.predict(new_error)
print("Adaptive Decoding Prediction:", prediction)