-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathembroider.py
807 lines (706 loc) · 24.4 KB
/
embroider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
#!/usr/bin/python
#
# documentation: see included index.html
# LICENSE:
# Copyright 2010 by Jon Howell,
# Originally licensed under <a href="http://www.gnu.org/licenses/quick-guide-gplv3.html">GPLv3</a>.
# Copyright 2015 by Bas Wijnen <[email protected]>.
# New parts are licensed under AGPL3 or later.
# (Note that this means this work is licensed under the common part of those two: AGPL version 3.)
#
# Important resources:
# lxml interface for walking SVG tree:
# http://codespeak.net/lxml/tutorial.html#elementpath
# Inkscape library for extracting paths from SVG:
# http://wiki.inkscape.org/wiki/index.php/Python_modules_for_extensions#simplepath.py
# Shapely computational geometry library:
# http://gispython.org/shapely/manual.html#multipolygons
# Embroidery file format documentation:
# http://www.achatina.de/sewing/main/TECHNICL.HTM
import sys
sys.path.append("/usr/share/inkscape/extensions")
import os
from copy import deepcopy
import time
import inkex
import simplepath
import simplestyle
import cspsubdiv
import cubicsuperpath
import PyEmb
import math
import random
import operator
import lxml.etree as etree
from lxml.builder import E
import shapely.geometry as shgeo
import shapely.affinity as affinity
dbg = open("/tmp/embroider-debug.txt", "w")
PyEmb.dbg = dbg
pixels_per_millimeter = 90.0 / 25.4
def bboxarea(poly):
x0=None
x1=None
y0=None
y1=None
for pt in poly:
if (x0==None or pt[0]<x0): x0 = pt[0]
if (x1==None or pt[0]>x1): x1 = pt[0]
if (y0==None or pt[1]<y0): y0 = pt[1]
if (y1==None or pt[1]>y1): y1 = pt[1]
return (x1-x0)*(y1-y0)
def area(poly):
return bboxarea(poly)
def byarea(a,b):
return -cmp(area(a), area(b))
def cspToShapelyPolygon(path):
poly_ary = []
for sub_path in path:
point_ary = []
last_pt = None
for csp in sub_path:
pt = (csp[1][0],csp[1][1])
if (last_pt!=None):
vp = (pt[0]-last_pt[0],pt[1]-last_pt[1])
dp = math.sqrt(math.pow(vp[0],2.0)+math.pow(vp[1],2.0))
#dbg.write("dp %s\n" % dp)
if (dp > 0.01):
# I think too-close points confuse shapely.
point_ary.append(pt)
last_pt = pt
else:
last_pt = pt
poly_ary.append(point_ary)
# shapely's idea of "holes" are to subtract everything in the second set
# from the first. So let's at least make sure the "first" thing is the
# biggest path.
poly_ary.sort(byarea)
polygon = shgeo.MultiPolygon([(poly_ary[0], poly_ary[1:])])
return polygon
def shapelyCoordsToSvgD(geo):
coords = list(geo.coords)
new_path = []
new_path.append(['M', coords[0]])
for c in coords[1:]:
new_path.append(['L', c])
return simplepath.formatPath(new_path)
def shapelyLineSegmentToPyTuple(shline):
tuple = ((shline.coords[0][0],shline.coords[0][1]),
(shline.coords[1][0],shline.coords[1][1]))
return tuple
def dupNodeAttrs(node):
n2 = E.node()
for k in node.attrib.keys():
n2.attrib[k] = node.attrib[k]
del n2.attrib["id"]
del n2.attrib["d"]
return n2
class Patch:
def __init__(self, color, sortorder, stitches=None):
self.color = color
self.sortorder = sortorder
if (stitches!=None):
self.stitches = stitches
else:
self.stitches = []
def addStitch(self, stitch):
self.stitches.append(stitch)
def reverse(self):
return Patch(self.color, self.sortorder, self.stitches[::-1])
class DebugHole:
pass
class PatchList:
def __init__(self, patches):
self.patches = patches
def sort_by_sortorder(self):
def by_sort_order(a,b):
return cmp(a.sortorder, b.sortorder)
self.patches.sort(by_sort_order)
def partition_by_color(self):
self.sort_by_sortorder()
#dbg.write("Sorted by sortorder:\n");
#dbg.write(" %s\n" % ("\n".join(map(lambda p: str(p.sortorder), self.patches))))
out = []
lastPatch = None
for patch in self.patches:
if (lastPatch!=None and patch.color==lastPatch.color):
out[-1].patches.append(patch)
else:
out.append(PatchList([patch]))
lastPatch = patch
#dbg.write("Emitted %s partitions\n" % len(out))
return out
def tsp_by_color(self):
list_of_patchLists = self.partition_by_color()
for patchList in list_of_patchLists:
patchList.traveling_salesman()
return PatchList(reduce(operator.add,
map(lambda pl: pl.patches, list_of_patchLists)))
# # TODO apparently dead code; replaced by partition_by_color above
# def clump_like_colors_together(self):
# out = PatchList([])
# lastPatch = None
# for patch in self.patches:
# if (lastPatch!=None and patch.color==lastPatch.color):
# out.patches[-1] = Patch(
# out.patches[-1].color,
# out.patches[-1].sortorder,
# out.patches[-1].stitches+patch.stitches)
# else:
# out.patches.append(patch)
# lastPatch = patch
# return out
def get(self, i):
if (i<0 or i>=len(self.patches)):
return None
return self.patches[i]
def cost(self, a, b):
if (a==None or b==None):
rc = 0.0
else:
rc = (a.stitches[-1] - b.stitches[0]).length()
#dbg.write("cost(%s, %s) = %5.1f\n" % (a, b, rc))
return rc
def try_swap(self, i, j):
# i,j are indices;
#dbg.write("swap(%d, %d)\n" % (i,j))
oldCost = (
self.cost(self.get(i-1), self.get(i))
+self.cost(self.get(i), self.get(i+1))
+self.cost(self.get(j-1), self.get(j))
+self.cost(self.get(j), self.get(j+1)))
npi = self.get(j)
npj = self.get(i)
rpi = npi.reverse()
rpj = npj.reverse()
options = [
(npi,npj),
(rpi,npj),
(npi,rpj),
(rpi,rpj),
]
def costOf(np):
(npi,npj) = np
return (
self.cost(self.get(i-1), npi)
+self.cost(npi, self.get(i+1))
+self.cost(self.get(j-1), npj)
+self.cost(npj, self.get(j+1)))
costs = map(lambda o: (costOf(o), o), options)
costs.sort()
(cost,option) = costs[0]
savings = oldCost - cost
if (savings > 0):
self.patches[i] = option[0]
self.patches[j] = option[1]
success = "!"
else:
success = "."
#dbg.write("old %5.1f new %5.1f savings: %5.1f\n" % (oldCost, cost, savings))
return success
def try_reverse(self, i):
#dbg.write("reverse(%d)\n" % i)
oldCost = (self.cost(self.get(i-1), self.get(i))
+self.cost(self.get(i), self.get(i+1)))
reversed = self.get(i).reverse()
newCost = (self.cost(self.get(i-1), reversed)
+self.cost(reversed, self.get(i+1)))
savings = oldCost - newCost
if (savings > 0.0):
self.patches[i] = reversed
success = "#"
else:
success = "_"
return success
def traveling_salesman(self):
# shockingly, this is non-optimal and pretty much non-efficient. Sorry.
self.centroid = PyEmb.Point(0.0,0.0)
self.pointList = []
for patch in self.patches:
def visit(idx):
ep = deepcopy(patch.stitches[idx])
ep.patch = patch
self.centroid+=ep
self.pointList.append(ep)
visit(0)
visit(-1)
self.centroid = self.centroid.mul(1.0/float(len(self.pointList)))
def linear_min(list, func):
min_item = None
min_value = None
for item in list:
value = func(item)
#dbg.write('linear_min %s: value %s => %s (%s)\n' % (func, item, value, value<min_value))
if (min_value==None or value<min_value):
min_item = item
min_value = value
#dbg.write('linear_min final item %s value %s\n' % (min_item, min_value))
return min_item
sortedPatchList = PatchList([])
def takePatchStartingAtPoint(point):
patch = point.patch
#dbg.write("takePatchStartingAtPoint angling for patch %s--%s\n" % (patch.stitches[0],patch.stitches[-1]))
self.pointList = filter(lambda pt: pt.patch!=patch, self.pointList)
reversed = ""
if (point!=patch.stitches[0]):
reversed = " (reversed)"
#dbg.write('patch.stitches[0] %s point %s match %s\n' % (patch.stitches[0], point, point==patch.stitches[0]))
patch = patch.reverse()
sortedPatchList.patches.append(patch)
#dbg.write('took patch %s--%s %s\n' % (patch.stitches[0], patch.stitches[-1], reversed))
# Take the patch farthest from the centroid first
# O(n)
#dbg.write('centroid: %s\n' % self.centroid)
def neg_distance_from_centroid(p):
return -(p-self.centroid).length()
farthestPoint = linear_min(self.pointList, neg_distance_from_centroid)
takePatchStartingAtPoint(farthestPoint)
#sortedPatchList.patches[0].color = "#000000"
# Then greedily take closer-and-closer patches
# O(n^2)
while (len(self.pointList)>0):
#dbg.write('pass %s\n' % len(self.pointList));
last_point = sortedPatchList.patches[-1].stitches[-1]
#dbg.write('last_point now %s\n' % last_point)
def distance_from_last_point(p):
return (p-last_point).length()
nearestPoint = linear_min(self.pointList, distance_from_last_point)
takePatchStartingAtPoint(nearestPoint)
# install the initial result
self.patches = sortedPatchList.patches
if (1):
# Then hill-climb.
#dbg.write("len(self.patches) = %d\n" % len(self.patches))
count = 0
successStr = ""
while (count < 100):
i = random.randint(0, len(self.patches)-1)
j = random.randint(0, len(self.patches)-1)
successStr += self.try_swap(i,j)
count += 1
# tidy up at end as best we can
for i in range(len(self.patches)):
successStr += self.try_reverse(i)
#dbg.write("success: %s\n" % successStr)
class EmbroideryObject:
def __init__(self, patchList, row_spacing_px):
self.patchList = patchList
self.row_spacing_px = row_spacing_px
def make_preamble_stitch(self, lastp, nextp):
def fromPolar(r, phi):
x = r * math.cos(phi)
y = r * math.sin(phi)
return (x, y)
def toPolar(x, y):
r = math.sqrt(x ** 2 + y ** 2)
if r == 0:
phi = 0
elif y == 0:
phi = 0 if x > 0 else math.pi
else:
phi = cmp(y, 0) * math.acos(x / r)
return (r, phi)
v = nextp - lastp
(r, phi) = toPolar(v.x, v.y)
PREAMBLE_MAX_DIST = 0.5 * pixels_per_millimeter # 1/2mm
if r < PREAMBLE_MAX_DIST:
# nextp is close enough to lastp, so we don't generate
# extra points in between, but just use nextp
return nextp
r = PREAMBLE_MAX_DIST
(x, y) = fromPolar(r, phi)
return PyEmb.Point(x, y) + lastp
def emit_file(self, filename, output_format, collapse_len_px, add_preamble):
emb = PyEmb.Embroidery()
lastStitch = None
lastColor = None
for patch in self.patchList.patches:
jumpStitch = True
for stitch in patch.stitches:
if lastStitch and lastColor == patch.color:
c = math.sqrt((stitch.x - lastStitch.x) ** 2 + (stitch.y - lastStitch.y) ** 2)
#dbg.write("stitch length: %f (%d/%d -> %d/%d)\n" % (c, lastStitch.x, lastStitch.y, stitch.x, stitch.y))
if c == 0:
# filter out duplicate successive stitches
jumpStitch = False
continue
if jumpStitch:
# consider collapsing jump stich, if it is pretty short
if c < collapse_len_px:
#dbg.write("... collapsed\n")
jumpStitch = False
#dbg.write("stitch color %s\n" % patch.color)
newStitch = PyEmb.Point(stitch.x, -stitch.y)
newStitch.color = patch.color
newStitch.jumpStitch = jumpStitch
emb.addStitch(newStitch)
if jumpStitch and add_preamble != "0":
locs = [ newStitch ]
i = 0
nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y)
try:
for j in xrange(1, 4):
if locs[-1] == nextp:
i += 1
nextp = PyEmb.Point(patch.stitches[i].x, -patch.stitches[i].y)
locs.append(self.make_preamble_stitch(locs[-1], nextp))
except IndexError:
# happens when the patch is very short and we increment i beyond the number of stitches
pass
#dbg.write("preamble locations: %s\n" % locs)
for j in add_preamble[1:]:
try:
stitch = deepcopy(locs[int(j)])
stitch.color = patch.color
stitch.jumpStitch = False
emb.addStitch(stitch)
except IndexError:
pass
jumpStitch = False
lastStitch = newStitch
lastColor = patch.color
#emb.translate_to_origin()
emb.scale(1.0/pixels_per_millimeter)
fp = open(filename, "wb")
if output_format == "melco":
fp.write(emb.export_melco(dbg))
elif output_format == "csv":
fp.write(emb.export_csv(dbg))
elif output_format == "gcode":
fp.write(emb.export_gcode(dbg))
fp.close()
emb.scale(pixels_per_millimeter)
return emb
def emit_inkscape(self, parent, emb):
emb.scale((1, -1));
for color, path in emb.export_paths(dbg):
dbg.write('path: %s %s\n' % (color, repr(path)))
inkex.etree.SubElement(parent,
inkex.addNS('path', 'svg'),
{ 'style':simplestyle.formatStyle(
{ 'stroke': color if color is not None else '#000000',
'stroke-width':str(self.row_spacing_px*0.5),
'fill': 'none' }),
'd':simplepath.formatPath(path),
})
def bbox(self):
x = []
y = []
for patch in self.patchList.patches:
for stitch in patch.stitches:
x.append(stitch.x)
y.append(stitch.y)
return (min(x), min(y), max(x), max(y))
class SortOrder:
def __init__(self, threadcolor, stacking_order, preserve_order):
self.threadcolor = threadcolor
if (preserve_order):
#dbg.write("preserve_order is true:\n");
self.sorttuple = (stacking_order, threadcolor)
else:
#dbg.write("preserve_order is false:\n");
self.sorttuple = (threadcolor, stacking_order)
def __cmp__(self, other):
return cmp(self.sorttuple, other.sorttuple)
def __repr__(self):
return "sort %s color %s" % (self.sorttuple, self.threadcolor)
class Embroider(inkex.Effect):
def __init__(self, *args, **kwargs):
#dbg.write("args: %s\n" % repr(sys.argv))
inkex.Effect.__init__(self)
self.stacking_order_counter = 0
self.OptionParser.add_option("-r", "--row_spacing_mm",
action="store", type="float",
dest="row_spacing_mm", default=0.4,
help="row spacing (mm)")
self.OptionParser.add_option("-z", "--zigzag_spacing_mm",
action="store", type="float",
dest="zigzag_spacing_mm", default=1.0,
help="zigzag spacing (mm)")
self.OptionParser.add_option("-l", "--max_stitch_len_mm",
action="store", type="float",
dest="max_stitch_len_mm", default=3.0,
help="max stitch length (mm)")
self.OptionParser.add_option("-c", "--collapse_len_mm",
action="store", type="float",
dest="collapse_len_mm", default=0.0,
help="max collapse length (mm)")
self.OptionParser.add_option("-f", "--flatness",
action="store", type="float",
dest="flat", default=0.1,
help="Minimum flatness of the subdivided curves")
self.OptionParser.add_option("-o", "--preserve_order",
action="store", type="choice",
choices=["true","false"],
dest="preserve_order", default="false",
help="Sort by stacking order instead of color")
self.OptionParser.add_option("-H", "--hatch_filled_paths",
action="store", type="choice",
choices=["true","false"],
dest="hatch_filled_paths", default="false",
help="Use hatching lines instead of equally-spaced lines to fill paths")
self.OptionParser.add_option("-p", "--add_preamble",
action="store", type="choice",
choices=["0","010","01010","01210","012101210"],
dest="add_preamble", default="0",
help="Add preamble")
self.OptionParser.add_option("-O", "--output_format",
action="store", type="choice",
choices=["melco", "csv", "gcode"],
dest="output_format", default="melco",
help="File output format")
self.OptionParser.add_option("-F", "--filename",
action="store", type="string",
dest="filename", default="embroider-output.exp",
help="Name (and possibly path) of output file")
self.patches = []
def get_sort_order(self, threadcolor):
self.stacking_order_counter += 1
return SortOrder(threadcolor, self.stacking_order_counter, self.options.preserve_order=="true")
def process_one_path(self, shpath, threadcolor, sortorder, angle):
#self.add_shapely_geo_to_svg(shpath.boundary, color="#c0c000")
rows_of_segments = self.intersect_region_with_grating(shpath, angle)
segments = self.visit_segments_one_by_one(rows_of_segments)
def small_stitches(patch, beg, end):
vector = (end-beg)
patch.addStitch(beg)
old_dist = vector.length()
if (old_dist < self.max_stitch_len_px):
patch.addStitch(end)
return
one_stitch = vector.mul(1.0 / old_dist * self.max_stitch_len_px * random.random())
beg = beg + one_stitch
while (True):
vector = (end-beg)
dist = vector.length()
assert(old_dist==None or dist<old_dist)
old_dist = dist
patch.addStitch(beg)
if (dist < self.max_stitch_len_px):
patch.addStitch(end)
return
one_stitch = vector.mul(1.0/dist*self.max_stitch_len_px)
beg = beg + one_stitch
swap = False
patch = Patch(color=threadcolor,sortorder=sortorder)
for (beg,end) in segments:
if (swap):
(beg,end)=(end,beg)
if not self.hatching:
swap = not swap
small_stitches(patch, PyEmb.Point(*beg),PyEmb.Point(*end))
return [patch]
def intersect_region_with_grating(self, shpath, angle):
#dbg.write("bounds = %s\n" % str(shpath.bounds))
rotated_shpath = affinity.rotate(shpath, angle, use_radians = True)
bbox = rotated_shpath.bounds
delta = self.row_spacing_px * 50 # *2 should be enough but isn't. TODO: find out why, and if this always works.
bbox = affinity.rotate(shgeo.LinearRing(((bbox[0] - delta, bbox[1] - delta), (bbox[2] + delta, bbox[1] - delta), (bbox[2] + delta, bbox[3] + delta), (bbox[0] - delta, bbox[3] + delta))), -angle, use_radians = True).coords
p0 = PyEmb.Point(bbox[0][0], bbox[0][1])
p1 = PyEmb.Point(bbox[1][0], bbox[1][1])
p2 = PyEmb.Point(bbox[3][0], bbox[3][1])
count = (p2 - p0).length() / self.row_spacing_px
p_inc = (p2 - p0).mul(1 / count)
count += 2
rows = []
steps = 0
while (steps < count):
try:
steps += 1
p0 += p_inc
p1 += p_inc
endpoints = [p0.as_tuple(), p1.as_tuple()]
shline = shgeo.LineString(endpoints)
res = shline.intersection(shpath)
if (isinstance(res, shgeo.MultiLineString)):
runs = map(shapelyLineSegmentToPyTuple, res.geoms)
else:
runs = [shapelyLineSegmentToPyTuple(res)]
if self.hatching and len(rows) > 0:
rows.append([(rows[-1][0][1], runs[0][0])])
rows.append(runs)
except Exception, ex:
dbg.write("--------------\n")
dbg.write("%s\n" % ex)
dbg.write("%s\n" % shline)
dbg.write("%s\n" % shpath)
dbg.write("==============\n")
continue
return rows
def visit_segments_one_by_one(self, rows):
def pull_runs(rows):
new_rows = []
run = []
for r in rows:
(first,rest) = (r[0], r[1:])
run.append(first)
if (len(rest)>0):
new_rows.append(rest)
return (run, new_rows)
linearized_runs = []
count = 0
while (len(rows) > 0):
(one_run,rows) = pull_runs(rows)
linearized_runs.extend(one_run)
rows = rows[::-1]
count += 1
if (count>100): raise "kablooey"
return linearized_runs
def handle_node(self, node):
if (node.tag != self.svgpath):
#dbg.write("%s\n"%str((id, etree.tostring(node, pretty_print=True))))
#dbg.write("not a path; recursing:\n")
for child in node.iter(self.svgpath):
self.handle_node(child)
return
#dbg.write("Node: %s\n"%str((id, etree.tostring(node, pretty_print=True))))
israw = False
desc = node.findtext(inkex.addNS('desc', 'svg'))
if desc is None:
desc = ''
descparts = {}
for part in desc.split(';'):
if '=' in part:
k, v = part.split('=', 1)
else:
k, v = part, ''
descparts[k] = v
israw = 'embroider_raw' in descparts
if (israw):
self.patchList.patches.extend(self.path_to_patch_list(node))
else:
if (self.get_style(node, "fill")!=None):
angle = math.radians(float(descparts.get('embroider_angle', 0)))
self.patchList.patches.extend(self.filled_region_to_patchlist(node, angle))
if (self.get_style(node, "stroke")!=None):
self.patchList.patches.extend(self.path_to_patch_list(node))
def get_style(self, node, style_name):
style = simplestyle.parseStyle(node.get("style"))
if (style_name not in style):
return None
value = style[style_name]
if (value==None or value=="none"):
return None
return value
def effect(self):
self.row_spacing_px = self.options.row_spacing_mm * pixels_per_millimeter
self.zigzag_spacing_px = self.options.zigzag_spacing_mm * pixels_per_millimeter
self.max_stitch_len_px = self.options.max_stitch_len_mm*pixels_per_millimeter
self.collapse_len_px = self.options.collapse_len_mm*pixels_per_millimeter
self.hatching = self.options.hatch_filled_paths == "true"
self.svgpath = inkex.addNS('path', 'svg')
self.patchList = PatchList([])
for id, node in self.selected.iteritems():
self.handle_node(node)
self.patchList = self.patchList.tsp_by_color()
#dbg.write("patch count: %d\n" % len(self.patchList.patches))
eo = EmbroideryObject(self.patchList, self.row_spacing_px)
emb = eo.emit_file(self.options.filename, self.options.output_format,
self.collapse_len_px, self.options.add_preamble)
new_group = inkex.etree.SubElement(self.current_layer,
inkex.addNS('g', 'svg'), {})
eo.emit_inkscape(new_group, emb)
self.emit_inkscape_bbox(new_group, eo)
def emit_inkscape_bbox(self, parent, eo):
(x0, y0, x1, y1) = eo.bbox()
new_path = []
new_path.append(['M', (x0,y0)])
new_path.append(['L', (x1,y0)])
new_path.append(['L', (x1,y1)])
new_path.append(['L', (x0,y1)])
new_path.append(['L', (x0,y0)])
inkex.etree.SubElement(parent,
inkex.addNS('path', 'svg'),
{ 'style':simplestyle.formatStyle(
{ 'stroke': '#ff00ff',
'stroke-width':str(1),
'fill': 'none' }),
'd':simplepath.formatPath(new_path),
})
def path_to_patch_list(self, node):
threadcolor = simplestyle.parseStyle(node.get("style"))["stroke"]
stroke_width_str = simplestyle.parseStyle(node.get("style"))["stroke-width"]
if (stroke_width_str.endswith("px")):
# don't really know how we should be doing unit conversions.
# but let's hope px are kind of like pts?
stroke_width_str = stroke_width_str[:-2]
stroke_width = float(stroke_width_str)
#dbg.write("stroke_width is <%s>\n" % repr(stroke_width))
#dbg.flush()
sortorder = self.get_sort_order(threadcolor)
path = simplepath.parsePath(node.get("d"))
# regularize the points lists.
# (If we're parsing beziers, there will be a list of multi-point
# subarrays.)
patches = []
emb_point_list = []
def flush_point_list():
STROKE_MIN = 0.5 # a 0.5pt stroke becomes a straight line.
if (stroke_width <= STROKE_MIN):
#dbg.write("self.max_stitch_len_px = %s\n" % self.max_stitch_len_px)
patch = self.stroke_points(emb_point_list, self.max_stitch_len_px, 0.0, threadcolor, sortorder)
else:
patch = self.stroke_points(emb_point_list, self.zigzag_spacing_px*0.5, stroke_width, threadcolor, sortorder)
patches.extend(patch)
close_point = None
for (type,points) in path:
#dbg.write("path_to_patch_list parses pt %s with type=%s\n" % (points, type))
if type == 'M' and len(emb_point_list):
flush_point_list()
emb_point_list = []
if type == 'Z':
#dbg.write("... closing patch to %s\n" % close_point)
emb_point_list.append(close_point)
else:
pointscopy = list(points)
while (len(pointscopy)>0):
emb_point_list.append(PyEmb.Point(pointscopy[0], pointscopy[1]))
pointscopy = pointscopy[2:]
if type == 'M':
#dbg.write("latching close_point %s\n" % emb_point_list[-1])
close_point = emb_point_list[-1]
flush_point_list()
return patches
def stroke_points(self, emb_point_list, zigzag_spacing_px, stroke_width, threadcolor, sortorder):
patch = Patch(color=threadcolor, sortorder=sortorder)
p0 = emb_point_list[0]
rho = 0.0
fact = 1
for segi in range(1, len(emb_point_list)):
p1 = emb_point_list[segi]
# how far we have to go along segment
seg_len = (p1 - p0).length()
if (seg_len == 0):
continue
# vector pointing along segment
along = (p1 - p0).unit()
# vector pointing to edge of stroke width
perp = along.rotate_left().mul(stroke_width*0.5)
# iteration variable: how far we are along segment
while (rho <= seg_len):
left_pt = p0+along.mul(rho)+perp.mul(fact)
patch.addStitch(left_pt)
rho += zigzag_spacing_px
fact = -fact
p0 = p1
rho -= seg_len
return [patch]
def filled_region_to_patchlist(self, node, angle):
p = cubicsuperpath.parsePath(node.get("d"))
cspsubdiv.cspsubdiv(p, self.options.flat)
shapelyPolygon = cspToShapelyPolygon(p)
threadcolor = simplestyle.parseStyle(node.get("style"))["fill"]
sortorder = self.get_sort_order(threadcolor)
return self.process_one_path(
shapelyPolygon,
threadcolor,
sortorder,
angle)
#TODO def make_stroked_patch(self, node):
if __name__ == '__main__':
sys.setrecursionlimit(100000);
e = Embroider()
e.affect()
#dbg.write("aaaand, I'm done. seeeya!\n")
dbg.flush()
dbg.close()