-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathPyEmb.py
295 lines (252 loc) · 7.19 KB
/
PyEmb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#!python
#!/usr/bin/python
# http://www.achatina.de/sewing/main/TECHNICL.HTM
import math
import sys
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __add__(self, other):
return Point(self.x+other.x, self.y+other.y)
def __sub__(self, other):
return Point(self.x-other.x, self.y-other.y)
def mul(self, scalar):
return Point(self.x*scalar, self.y*scalar)
def __repr__(self):
return "Pt(%s,%s)" % (self.x,self.y)
def length(self):
return math.sqrt(math.pow(self.x,2.0)+math.pow(self.y,2.0))
def unit(self):
return self.mul(1.0/self.length())
def rotate_left(self):
return Point(-self.y, self.x)
def rotate(self, angle):
return Point(self.x * math.cos(angle) - self.y * math.sin(angle), self.y * math.cos(angle) + self.x * math.sin(angle))
def as_int(self):
return Point(int(round(self.x)), int(round(self.y)))
def as_tuple(self):
return (self.x,self.y)
def __cmp__(self, other):
return cmp(self.as_tuple(), other.as_tuple())
class Embroidery:
def __init__(self):
self.coords = []
def addStitch(self, coord):
if len(self.coords) == 0 or self.coords[-1] != coord:
self.coords.append(coord)
def translate_to_origin(self):
if (len(self.coords)==0):
return
(maxx,maxy) = (self.coords[0].x,self.coords[0].y)
(minx,miny) = (self.coords[0].x,self.coords[0].y)
for p in self.coords:
minx = min(minx,p.x)
miny = min(miny,p.y)
maxx = max(maxx,p.x)
maxy = max(maxy,p.y)
sx = maxx-minx
sy = maxy-miny
for p in self.coords:
p.x -= minx
p.y -= miny
def scale(self, sc):
if not isinstance(sc, (tuple, list)):
sc = (sc, sc)
for p in self.coords:
p.x *= sc[0]
p.y *= sc[1]
def export_ksm(self, dbg):
str = ""
self.pos = Point(0,0)
lastColor = None
for stitch in self.coords:
if (lastColor!=None and stitch.color!=lastColor):
mode_byte = 0x99
#dbg.write("Color change!\n")
else:
mode_byte = 0x80
#dbg.write("color still %s\n" % stitch.color)
lastColor = stitch.color
new_int = stitch.as_int()
old_int = self.pos.as_int()
delta = new_int - old_int
assert(abs(delta.x)<=127)
assert(abs(delta.y)<=127)
str+=chr(abs(delta.y))
str+=chr(abs(delta.x))
if (delta.y<0):
mode_byte |= 0x20
if (delta.x<0):
mode_byte |= 0x40
str+=chr(mode_byte)
self.pos = stitch
return str
def export_melco(self, dbg):
self.str = ""
self.pos = self.coords[0]
#dbg.write("stitch count: %d\n" % len(self.coords))
lastColor = None
numColors = 0x0
for stitch in self.coords[1:]:
if (lastColor!=None and stitch.color!=lastColor):
numColors += 1
# color change
self.str += chr(0x80)
self.str += chr(0x01)
# self.str += chr(numColors)
# self.str += chr(((numColors+0x80)>>8)&0xff)
# self.str += chr(((numColors+0x80)>>0)&0xff)
lastColor = stitch.color
new_int = stitch.as_int()
old_int = self.pos.as_int()
delta = new_int - old_int
def move(x,y):
if (x<0): x = x + 256
self.str+=chr(x)
if (y<0): y = y + 256
self.str+=chr(y)
while (delta.x!=0 or delta.y!=0):
def clamp(v):
if (v>127):
v = 127
if (v<-127):
v = -127
return v
dx = clamp(delta.x)
dy = clamp(delta.y)
move(dx,dy)
delta.x -= dx
delta.y -= dy
#dbg.write("Stitch: %s delta %s\n" % (stitch, delta))
self.pos = stitch
return self.str
def export_csv(self, dbg):
self.str = ""
self.str += '"#","[THREAD_NUMBER]","[RED]","[GREEN]","[BLUE]","[DESCRIPTION]","[CATALOG_NUMBER]"\n'
self.str += '"#","[STITCH_TYPE]","[X]","[Y]"\n'
lastColor = None
colorIndex = 0
for stitch in self.coords:
if lastColor == None or stitch.color != lastColor:
colorIndex += 1
self.str += '"$","%d","%d","%d","%d","(null)","(null)"\n' % (
colorIndex,
int(stitch.color[1:3], 16),
int(stitch.color[3:5], 16),
int(stitch.color[5:7], 16))
if stitch.jumpStitch:
self.str += '"*","JUMP","%f","%f"\n' % (stitch.x/10, stitch.y/10)
if lastColor != None and stitch.color != lastColor:
# not first color choice, add color change record
self.str += '"*","COLOR","%f","%f"\n' % (stitch.x/10, stitch.y/10)
self.str += '"*","STITCH","%f","%f"\n' % (stitch.x/10, stitch.y/10)
lastColor = stitch.color
return self.str
def export_gcode(self, dbg):
ret = []
lastColor = None
for stitch in self.coords:
if stitch.color != lastColor:
ret.append('M0 ;MSG, Color change; prepare for %s\n' % stitch.color)
lastColor = stitch.color
ret.append('G1 X%f Y%f\n' % stitch.as_tuple())
ret.append('M0 ;MSG, EMBROIDER stitch\n')
return ''.join(ret)
def export_paths(self, dbg):
paths = []
lastColor = None
lastStitch = None
for stitch in self.coords:
if stitch.jumpStitch:
if lastColor == stitch.color:
paths.append([None, []])
if lastStitch is not None:
paths[-1][1].append(['M', lastStitch.as_tuple()])
paths[-1][1].append(['L', stitch.as_tuple()])
lastColor = None
if stitch.color != lastColor:
paths.append([stitch.color, []])
paths[-1][1].append(['L' if len(paths[-1][1]) > 0 else 'M', stitch.as_tuple()])
lastColor = stitch.color
lastStitch = stitch
return paths
class Test:
def __init__(self):
emb = Embroidery()
for x in range(0,301,30):
emb.addStitch(Point(x, 0));
emb.addStitch(Point(x, 15));
emb.addStitch(Point(x, 0));
for x in range(300,-1,-30):
emb.addStitch(Point(x, -12));
emb.addStitch(Point(x, -27));
emb.addStitch(Point(x, -12));
fp = open("test.exp", "wb")
fp.write(emb.export_melco())
fp.close()
class Turtle:
def __init__(self):
self.emb = Embroidery()
self.pos = Point(0.0,0.0)
self.dir = Point(1.0,0.0)
self.emb.addStitch(self.pos)
def forward(self, dist):
self.pos = self.pos+self.dir.mul(dist)
self.emb.addStitch(self.pos)
def turn(self, degreesccw):
radcw = -degreesccw/180.0*3.141592653589
self.dir = Point(
math.cos(radcw)*self.dir.x-math.sin(radcw)*self.dir.y,
math.sin(radcw)*self.dir.x+math.cos(radcw)*self.dir.y)
def right(self, degreesccw):
self.turn(degreesccw)
def left(self, degreesccw):
self.turn(-degreesccw)
class Koch(Turtle):
def __init__(self, depth):
Turtle.__init__(self)
edgelen = 750.0
for i in range(3):
self.edge(depth, edgelen)
self.turn(120.0)
fp = open("koch%d.exp" % depth, "wb")
fp.write(self.emb.export_melco())
fp.close()
def edge(self, depth, dist):
if (depth==0):
self.forward(dist)
else:
self.edge(depth-1, dist/3.0)
self.turn(-60.0)
self.edge(depth-1, dist/3.0)
self.turn(120.0)
self.edge(depth-1, dist/3.0)
self.turn(-60.0)
self.edge(depth-1, dist/3.0)
class Hilbert(Turtle):
def __init__(self, level):
Turtle.__init__(self)
self.size = 10.0
self.hilbert(level, 90.0)
fp = open("hilbert%d.exp" % level, "wb")
fp.write(self.emb.export_melco())
fp.close()
# http://en.wikipedia.org/wiki/Hilbert_curve#Python
def hilbert(self, level, angle):
if (level==0):
return
self.right(angle)
self.hilbert(level-1, -angle)
self.forward(self.size)
self.left(angle)
self.hilbert(level-1, angle)
self.forward(self.size)
self.hilbert(level-1, angle)
self.left(angle)
self.forward(self.size)
self.hilbert(level-1, -angle)
self.right(angle)
if (__name__=='__main__'):
#Koch(4)
Hilbert(6)