forked from Tobi2K/Graph-MLP-Sampling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
135 lines (112 loc) · 4.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
import torch
from normalization import fetch_normalization, row_normalize
from ogb.nodeproppred import PygNodePropPredDataset
from torch_geometric.datasets import Planetoid, Reddit2, FacebookPagePage
from torch_geometric.utils import mask_to_index, to_scipy_sparse_matrix
from torch_geometric.transforms import RandomNodeSplit
def get_A_r(adj, r):
adj_label = adj.to_dense()
if r == 1:
adj_label = adj_label
elif r == 2:
adj_label = adj_label @ adj_label
elif r == 3:
adj_label = adj_label @ adj_label @ adj_label
elif r == 4:
adj_label = adj_label @ adj_label @ adj_label @ adj_label
return adj_label
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def preprocess_dataset(adj, normalization="FirstOrderGCN", features=None):
adj_normalizer = fetch_normalization(normalization)
adj = adj_normalizer(adj)
if features:
features = row_normalize(features)
return adj, features
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def load_dataset(dataset_str="cora", normalization="AugNormAdj", cuda=True):
"""
Load All Datasets.
"""
dataset_str = dataset_str.lower()
if dataset_str in ['reddit2', 'ogbn-arxiv'] and cuda:
print("WARNING: The selected dataset is very large. It will probably not fit on a GPU, so we will calculate "
"the adjacency matrix on the CPU and RAM. This can take a long time! To use no GPU at all and run every "
"calculation on the CPU and RAM add --no-cuda.")
if dataset_str in ['cora', 'citeseer', 'pubmed', 'reddit2']:
dataset = None
if dataset_str in ['cora', 'citeseer', 'pubmed']:
dataset = Planetoid(root='dataset/Planetoid', name=dataset_str)
elif dataset_str in ['reddit2']:
dataset = Reddit2(root='dataset/Reddit2')
split = dataset.get(0)
adj = to_scipy_sparse_matrix(split.edge_index).tocoo().astype(np.float32)
features = split.x
labels = split.y
idx_train = mask_to_index(split.train_mask)
idx_val = mask_to_index(split.val_mask)
idx_test = mask_to_index(split.test_mask)
edge_index = split.edge_index
elif dataset_str in ['ogbn-arxiv']:
dataset = PygNodePropPredDataset(name=dataset_str)
split = dataset.get(0)
adj = to_scipy_sparse_matrix(split.edge_index).tocoo().astype(np.float32)
features = split.x
labels = torch.flatten(split.y)
split_idx = dataset.get_idx_split()
idx_train, idx_val, idx_test = split_idx["train"], split_idx["valid"], split_idx["test"]
edge_index = split.edge_index
elif dataset_str in ['facebook']:
dataset = FacebookPagePage(root='dataset/FacebookPagePage')
split = dataset.get(0)
transform = RandomNodeSplit(split='test_rest')
transform(split)
adj = to_scipy_sparse_matrix(split.edge_index).tocoo().astype(np.float32)
features = split.x
labels = split.y
idx_train = mask_to_index(split.train_mask)
idx_val = mask_to_index(split.val_mask)
idx_test = mask_to_index(split.test_mask)
edge_index = split.edge_index
else:
raise Exception('Unknown dataset. The following datasets are supported: Cora, Citeseer, PubMed, '
'OGBN-Arxiv, Reddit2 and FacebookPagePage. For more information use the --help option.')
print('DEBUG: Finished creating dataset')
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj, _ = preprocess_dataset(adj, normalization=normalization)
print('DEBUG: Finished preprocessing dataset')
# porting to pytorch
labels = torch.LongTensor(labels)
adj = sparse_mx_to_torch_sparse_tensor(adj).float()
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
edge_index = torch.LongTensor(edge_index)
print('DEBUG: Finished converting to pytorch')
if cuda:
features = features.cuda()
if dataset_str not in ['reddit2', 'ogbn-arxiv']:
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
edge_index = edge_index.cuda()
return adj, features, labels, idx_train, idx_val, idx_test, edge_index