-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathivector_PLDA_kaldiHelper.py
365 lines (281 loc) · 17.8 KB
/
ivector_PLDA_kaldiHelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
## Copyright (C) 2019, Guangke Chen <[email protected]>.
## This program is licenced under the BSD 2-Clause licence
## contained in the LICENCE file in this directory.
import numpy as np
import os
from scipy.io.wavfile import read, write
import subprocess
import shlex
import time
class ivector_PLDA_kaldiHelper:
def __init__(self, pre_model_dir="pre-models", audio_dir=None, mfcc_dir=None, log_dir=None, ivector_dir=None):
''' pre_model_dir: directory where final.dubm, final.ubm, final.ie,
mean.vec, transfrom.mat, plda, conf/, steps/, utils/ and sid/ are stored.
We call all these pre models.
audio_dir: directory to store the temp audios
mfcc_dir: directory where generated mfcc is stored
log_dir: directory where log information of kaldi is stored
ivector_dir: directory where extracted ivectors are stored
'''
self.pre_model_dir = os.path.abspath(pre_model_dir)
self.conf_dir = os.path.join(self.pre_model_dir, "conf")
audio_dir = audio_dir if audio_dir else "audio"
self.audio_dir = os.path.abspath(audio_dir)
mfcc_dir = mfcc_dir if mfcc_dir else "mfcc"
self.mfcc_dir = os.path.abspath(mfcc_dir)
log_dir = log_dir if log_dir else "log"
self.log_dir = os.path.abspath(log_dir)
ivector_dir = ivector_dir if ivector_dir else "ivector"
self.ivector_dir = os.path.abspath(ivector_dir)
''' deal with the protential permission issue
'''
all_files = (self.get_all_files(self.pre_model_dir + "/utils") +
self.get_all_files(self.pre_model_dir + "/steps") +
self.get_all_files(self.pre_model_dir + "/sid"))
for file in all_files:
change_permission_command = "chmod 777 " + file
args = shlex.split(change_permission_command)
p = subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
def get_all_files(self, root_dir):
files = []
for name in os.listdir(root_dir):
path = os.path.join(root_dir, name)
if os.path.isfile(path):
files.append(path)
else:
files_sub = self.get_all_files(path)
files += files_sub
return files
def write_audio(self, audio_list, audio_dir=None, fs=16000):
audio_dir = os.path.abspath(audio_dir) if audio_dir else self.audio_dir
n_audios = len(audio_list)
audio_path_list = list(range(n_audios))
for i, audio in enumerate(audio_list):
path = audio_dir + "/{}.wav".format(i)
write(path, fs, audio)
audio_path_list[i] = path
return audio_path_list
def data_prepare(self, audio_path_list, utt_id_list=None, spk_id_list=None, audio_dir=None, debug=False):
''' generate wav.scp, utt2spk, spk2utt in audio_dir according to utt_id_list,
spk_id_list, audio_path_list. utt_id_list, spk_id_list, audio_path_list are
three list objects with the same len
Note: if utt_id_list and spk_id_listis provided, both of them must be in sorted order,
otherwise, the returning scores may disorder
'''
audio_dir = os.path.abspath(audio_dir) if audio_dir else self.audio_dir
if not audio_dir:
print("--- Error:audio_dir is None, quit data_prepare ---")
return
''' if audio_path_list is in relative path, make it in absolute path, otherwise kaldi may cannot finds them.
'''
audio_path_list = [os.path.abspath(path) for path in audio_path_list]
# assert len(utt_id_list) == len(spk_id_list)
# assert len(utt_id_list) == len(audio_path_list)
n_audios = len(audio_path_list)
spk_id_list = spk_id_list if spk_id_list else [("0000" + str(i+1))[-5:] for i in range(n_audios)] # this may cause a bug if there are more than 100000 audios in audio_list
utt_id_list = utt_id_list if utt_id_list else [spk_id + "-{}".format(1) for spk_id in spk_id_list]
# wav.scp, utt2spk
wav_file = audio_dir + "/wav.scp"
utt2spk_file = audio_dir + "/utt2spk"
wav_mat = np.concatenate((np.array(utt_id_list)[:, np.newaxis], np.array(audio_path_list)[:, np.newaxis]), axis=1)
np.savetxt(wav_file, wav_mat, fmt="%s")
# utt2spk_mat = wav_mat
# utt2spk_mat[:, 1] = np.array(spk_id_list) # bug may rise here!
utt2spk_mat = np.concatenate((np.array(utt_id_list)[:, np.newaxis], np.array(spk_id_list)[:, np.newaxis]), axis=1)
np.savetxt(utt2spk_file, utt2spk_mat, fmt="%s")
# spk2utt
spk_id_vector = utt2spk_mat[:, 1]
spk_id_unique_vector = np.unique(spk_id_vector)
# may raise bug here, delete !!!
# spk2utt_mat = np.concatenate((spk_id_unique_vector[:, np.newaxis],
# spk_id_unique_vector[:, np.newaxis]), axis=1)
# for i, spk_id in enumerate(spk_id_unique_vector):
# utt_index = np.argwhere(spk_id_vector == spk_id).flatten()
# spk2utt_mat[i, 1] = ""
# for index in utt_index:
# spk2utt_mat[i, 1] += utt2spk_mat[index, 0]
spk2utt_list = []
for spk_id in spk_id_unique_vector:
utt_index = np.argwhere(spk_id_vector == spk_id).flatten()
utts = ""
for index in utt_index:
utts += (utt2spk_mat[index, 0] + " ")
utts.rstrip()
spk2utt_list.append(utts)
spk2utt_mat = np.concatenate((spk_id_unique_vector[:, np.newaxis], np.array(spk2utt_list)[:, np.newaxis]), axis=1)
spk2utt_file = audio_dir + "/spk2utt"
np.savetxt(spk2utt_file, spk2utt_mat, fmt="%s")
# fix dir
''' Note: every time we execuate the shell script in utils/, steps/ or sid/,
we need to change the current directory to pre_model_dir.
To avoid mistask, we should make all the dirs (e.g., audio_dir, log_dir) in absoulute path
'''
current_dir = os.path.abspath(os.curdir)
os.chdir(self.pre_model_dir)
fix_dir_command = self.pre_model_dir + "/utils/fix_data_dir.sh " + audio_dir
args = shlex.split(fix_dir_command)
p = subprocess.Popen(args) if debug else subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
os.chdir(current_dir)
return utt_id_list
def make_mfcc(self, n_jobs=10, mfcc_conf=None, audio_dir=None, mfcc_dir=None, log_dir=None, debug=False):
mfcc_conf = os.path.abspath(mfcc_conf) if mfcc_conf else (self.conf_dir + "/mfcc.conf")
audio_dir = os.path.abspath(audio_dir) if audio_dir else self.audio_dir
mfcc_dir = os.path.abspath(mfcc_dir) if mfcc_dir else self.mfcc_dir
log_dir = os.path.abspath(log_dir) if log_dir else self.log_dir
extract_mfcc_command = (self.pre_model_dir + "/steps/make_mfcc.sh --write-utt2num-frames true --mfcc-config " +
mfcc_conf + " --nj " + str(n_jobs) + " --cmd '$train_cmd' " + audio_dir + " " +
log_dir + " " + mfcc_dir)
current_dir = os.path.abspath(os.curdir)
os.chdir(self.pre_model_dir)
args = shlex.split(extract_mfcc_command)
p = subprocess.Popen(args) if debug else subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
os.chdir(current_dir)
def compute_vad(self, n_jobs=10, vad_conf=None, audio_dir=None, vad_dir=None, log_dir=None, debug=False):
vad_conf = os.path.abspath(vad_conf) if vad_conf else (self.conf_dir + "/vad.conf")
audio_dir = os.path.abspath(audio_dir) if audio_dir else self.audio_dir
vad_dir = os.path.abspath(vad_dir) if vad_dir else self.mfcc_dir
log_dir = os.path.abspath(log_dir) if log_dir else self.log_dir
vad_command = (self.pre_model_dir + "/steps/compute_vad_decision.sh --nj " + str(n_jobs) +
" --cmd '$train_cmd' --vad-config " + vad_conf + " " +
audio_dir + " " + log_dir + " " + vad_dir)
current_dir = os.path.abspath(os.curdir)
os.chdir(self.pre_model_dir)
args = shlex.split(vad_command)
p = subprocess.Popen(args) if debug else subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
os.chdir(current_dir)
# def extract_ivector(self, n_jobs=10, n_threads=1, audio_dir=None, ivector_dir=None, pre_model_dir=None, debug=False):
def extract_ivector(self, n_jobs=10, n_threads=1, audio_dir=None, ivector_dir=None, debug=False):
audio_dir = os.path.abspath(audio_dir) if audio_dir else self.audio_dir
ivector_dir = os.path.abspath(ivector_dir) if ivector_dir else self.ivector_dir
# pre_model_dir = pre_model_dir if pre_model_dir else self.pre_model_dir
extract_ivector_command = (self.pre_model_dir + "/sid/extract_ivectors.sh --cmd '$train_cmd' --nj " + str(n_jobs) +
" --num-threads " + str(n_threads) + " " + self.pre_model_dir + " " +
audio_dir + " " + ivector_dir)
current_dir = os.path.abspath(os.curdir)
os.chdir(self.pre_model_dir)
args = shlex.split(extract_ivector_command)
p = subprocess.Popen(args) if debug else subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
os.chdir(current_dir)
def write_trials(self, train_utt_id, test_utt_id, target=None, trials_file=None, flag=0):
''' train_utt_id: a list
test_utt_id: a list
target: a list
'''
trials_file = os.path.abspath(trials_file) if trials_file else self.ivector_dir + "/trials"
if flag == 1:
train_tmp = []
test_tmp = []
for i, id in enumerate(train_utt_id):
test_tmp += test_utt_id
train_tmp += [id for j in range(len(test_utt_id))]
train_utt_id = train_tmp
test_utt_id = test_tmp
flag = 0
if flag == 0:
assert len(train_utt_id) == len(test_utt_id)
n_trials = len(train_utt_id)
if target:
assert len(target) == len(train_utt_id)
else:
target = np.zeros(n_trials, dtype="<U9")
target.fill("nontarget")
trials_mat = np.concatenate((np.array(train_utt_id)[:, np.newaxis],
np.array(test_utt_id)[:, np.newaxis]), axis=1)
trials_mat = np.concatenate((trials_mat, target[:, np.newaxis]), axis=1)
np.savetxt(trials_file, trials_mat, fmt="%s")
def plda_scoring(self, train_ivector_scp=None, test_ivector_scp=None, trials_file=None, scores_file=None,
plda=None, mean_vec=None, transform_mat=None, debug=False):
train_ivector_scp = os.path.abspath(train_ivector_scp) if train_ivector_scp else self.ivector_dir + "/ivector.scp"
test_ivector_scp = os.path.abspath(test_ivector_scp) if test_ivector_scp else self.ivector_dir + "/ivector.scp"
trials_file = os.path.abspath(trials_file) if trials_file else self.ivector_dir + "/trials"
scores_file = os.path.abspath(scores_file) if scores_file else self.ivector_dir + "/scores"
plda = os.path.abspath(plda) if plda else self.pre_model_dir + "/plda"
mean_vec = os.path.abspath(mean_vec) if mean_vec else self.pre_model_dir + "/mean.vec"
transform_mat = os.path.abspath(transform_mat) if transform_mat else self.pre_model_dir + "/transform.mat"
copy_plda_command = "ivector-copy-plda --smoothing=0.0 " + plda + " - |"
train_ivector_command = "ark:ivector-subtract-global-mean " + mean_vec + " scp:" + train_ivector_scp + " ark:- | transform-vec " + transform_mat + " ark:- ark:- | ivector-normalize-length ark:- ark:- |"
test_ivector_command = "ark:ivector-subtract-global-mean " + mean_vec + " scp:" + test_ivector_scp + " ark:- | transform-vec " + transform_mat + " ark:- ark:- | ivector-normalize-length ark:- ark:- |"
trials_command = "cat " + trials_file + " | cut -d\ --fields=1,2 |"
scores_command = ("ivector-plda-scoring --normalize-length=true " +
shlex.quote(copy_plda_command) + " " +
shlex.quote(train_ivector_command) + " " +
shlex.quote(test_ivector_command) + " " +
shlex.quote(trials_command) + " " +
scores_file)
current_dir = os.path.abspath(os.curdir)
os.chdir(self.pre_model_dir)
args = shlex.split(scores_command)
p = subprocess.Popen(args) if debug else subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
os.chdir(current_dir)
def resolve_score(self, scores_file=None):
scores_file = os.path.abspath(scores_file) if scores_file else self.ivector_dir + "/scores"
scores_mat = np.loadtxt(scores_file, dtype=str)
if len(scores_mat.shape) == 1:
scores_mat = scores_mat[np.newaxis, :]
train_utt_id = scores_mat[:, 0]
test_utt_id = scores_mat[:, 1]
score = (scores_mat[:, 2]).astype(np.float64)
train_utt_id_unique = np.unique(train_utt_id)
test_utt_id_unique = np.unique(test_utt_id)
''' If there is only one speaker or only one test utterance, directly return the score.
Otherwise, return the resolved score with the shape (#utterances, #speakers)
'''
if train_utt_id_unique.size == 1 or test_utt_id_unique.size == 1:
return score
else:
spk2score = []
for i, utt_id in enumerate(train_utt_id_unique):
index = np.argwhere(train_utt_id == utt_id).flatten()
spk2score.append(score[index])
return np.array(spk2score).T # Caution: we assume each spk have equla trials here, will raise bug if not
'''
When the audios to be scored are stored in disk (e.g., wav file), call this function
'''
def score_existing(self, audio_path_list, train_utt_id, spk_id_list=None, utt_id_list=None, test_utt_id=None,
n_jobs=10, n_threads=1,
audio_dir=None, mfcc_dir=None, log_dir=None, vad_dir=None, ivector_dir=None,
vad_conf=None, mfcc_conf=None, target=None, trials_file=None, flag=0,
train_ivector_scp=None, test_ivector_scp=None, scores_file=None,
plda=None, mean_vec=None, transform_mat=None, debug=False):
n_audios = len(audio_path_list)
if n_audios < n_jobs:
n_jobs = n_audios
utt_id_list = self.data_prepare(audio_path_list, spk_id_list=spk_id_list, utt_id_list=utt_id_list, audio_dir=audio_dir, debug=debug)
self.make_mfcc(n_jobs=n_jobs, mfcc_conf=mfcc_conf, audio_dir=audio_dir, mfcc_dir=mfcc_dir, log_dir=log_dir, debug=debug)
self.compute_vad(n_jobs=n_jobs, vad_conf=vad_conf, audio_dir=audio_dir, vad_dir=vad_dir, log_dir=log_dir, debug=debug)
self.extract_ivector(n_jobs=n_jobs, n_threads=n_threads, audio_dir=audio_dir, ivector_dir=ivector_dir, debug=debug)
test_utt_id = test_utt_id if test_utt_id else utt_id_list
self.write_trials(train_utt_id, test_utt_id, target=target, trials_file=trials_file, flag=flag)
self.plda_scoring(train_ivector_scp=train_ivector_scp, test_ivector_scp=test_ivector_scp, trials_file=trials_file, scores_file=scores_file,
plda=plda, mean_vec=mean_vec, transform_mat=transform_mat, debug=debug)
score_array = self.resolve_score()
return score_array
'''
When the audios to be scored are in the memory (e.g., in the form of np.array), call this function
'''
def score(self, audio_list, train_utt_id, spk_id_list=None, utt_id_list=None, test_utt_id=None,
n_jobs=10, n_threads=1,
audio_dir=None, mfcc_dir=None, log_dir=None, vad_dir=None, ivector_dir=None,
vad_conf=None, mfcc_conf=None, target=None, trials_file=None, flag=0,
train_ivector_scp=None, test_ivector_scp=None, scores_file=None,
plda=None, mean_vec=None, transform_mat=None, debug=False):
n_audios = len(audio_list)
if n_audios < n_jobs:
n_jobs = n_audios
audio_path_list = self.write_audio(audio_list, audio_dir=audio_dir)
utt_id_list = self.data_prepare(audio_path_list, spk_id_list=spk_id_list, utt_id_list=utt_id_list, audio_dir=audio_dir, debug=debug)
self.make_mfcc(n_jobs=n_jobs, mfcc_conf=mfcc_conf, audio_dir=audio_dir, mfcc_dir=mfcc_dir, log_dir=log_dir, debug=debug)
self.compute_vad(n_jobs=n_jobs, vad_conf=vad_conf, audio_dir=audio_dir, vad_dir=vad_dir, log_dir=log_dir, debug=debug)
self.extract_ivector(n_jobs=n_jobs, n_threads=n_threads, audio_dir=audio_dir, ivector_dir=ivector_dir, debug=debug)
test_utt_id = test_utt_id if test_utt_id else utt_id_list
self.write_trials(train_utt_id, test_utt_id, target=target, trials_file=trials_file, flag=flag)
self.plda_scoring(train_ivector_scp=train_ivector_scp, test_ivector_scp=test_ivector_scp, trials_file=trials_file, scores_file=scores_file,
plda=plda, mean_vec=mean_vec, transform_mat=transform_mat, debug=debug)
score_array = self.resolve_score()
return score_array