-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathgmm_ubm_CSI.py
110 lines (82 loc) · 4.15 KB
/
gmm_ubm_CSI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
## Copyright (C) 2019, Guangke Chen <[email protected]>.
## This program is licenced under the BSD 2-Clause licence
## contained in the LICENCE file in this directory.
import numpy as np
import os
import shutil
from gmm_ubm_kaldiHelper import gmm_ubm_kaldiHelper
import copy
class gmm_CSI(object):
def __init__(self, group_id, model_list, pre_model_dir="pre-models"):
self.pre_model_dir = os.path.abspath(pre_model_dir)
self.group_id = os.path.abspath(group_id)
if not os.path.exists(self.group_id):
os.makedirs(self.group_id)
self.audio_dir = os.path.abspath(self.group_id + "/audio")
self.mfcc_dir = os.path.abspath(self.group_id + "/mfcc")
self.log_dir = os.path.abspath(self.group_id + "/log")
self.score_dir = os.path.abspath(self.group_id + "/score")
self.n_speakers = len(model_list)
self.spk_ids = []
self.utt_ids = []
self.identity_locations = []
self.z_norm_means = np.zeros(self.n_speakers, dtype=np.float64)
self.z_norm_stds = np.zeros(self.n_speakers, dtype=np.float64)
for i, model in enumerate(model_list):
spk_id = model[0]
utt_id = model[1]
identity_location = model[2]
mean = model[3]
std = model[4]
self.spk_ids.append(spk_id)
self.utt_ids.append(utt_id)
self.identity_locations.append(identity_location)
self.z_norm_means[i] = mean
self.z_norm_stds[i] = std
self.model_list = self.identity_locations
self.kaldi_helper = gmm_ubm_kaldiHelper(pre_model_dir=self.pre_model_dir, audio_dir=self.audio_dir,
mfcc_dir=self.mfcc_dir, log_dir=self.log_dir, score_dir=self.score_dir)
def score(self, audios, fs=16000, bits_per_sample=16, debug=False, n_jobs=5):
if os.path.exists(self.audio_dir):
shutil.rmtree(self.audio_dir)
if os.path.exists(self.mfcc_dir):
shutil.rmtree(self.mfcc_dir)
if os.path.exists(self.log_dir):
shutil.rmtree(self.log_dir)
if os.path.exists(self.score_dir):
shutil.rmtree(self.score_dir)
if not os.path.exists(self.audio_dir):
os.makedirs(self.audio_dir)
if not os.path.exists(self.mfcc_dir):
os.makedirs(self.mfcc_dir)
if not os.path.exists(self.log_dir):
os.makedirs(self.log_dir)
if not os.path.exists(self.score_dir):
os.makedirs(self.score_dir)
if isinstance(audios, np.ndarray):
if len(audios.shape) == 1 or (len(audios.shape) == 2 and (audios.shape[0] == 1 or audios.shape[1] == 1)):
audio_list = []
audio_list.append(audios)
elif len(audios.shape) == 2:
audio_list = [audios[:, i] for i in range(audios.shape[1])]
else:
pass
else:
# audio_list = audios
audio_list = copy.deepcopy(audios) # avoid influencing
for i, audio in enumerate(audio_list):
if audio.dtype != np.int16:
audio_list[i] = (audio * (2 ** (bits_per_sample - 1))).astype(np.int16)
score_array = self.kaldi_helper.score(self.model_list, audio_list, fs=fs, n_jobs=n_jobs, debug=debug, bits_per_sample=bits_per_sample)
final_score = (score_array - self.z_norm_means) / self.z_norm_stds # (n_audos, n_spks)
return final_score if final_score.shape[0] > 1 else final_score[0] # (n_audios, n_spks) or (n_spks, )
def make_decisions(self, audios, fs=16000, bits_per_sample=16, n_jobs=5, debug=False):
score = self.score(audios, fs=fs, bits_per_sample=bits_per_sample, debug=debug, n_jobs=n_jobs)
if len(score.shape) == 1:
score = score[np.newaxis, :]
decisions = np.argmax(score, axis=1)
decisions = list(decisions)
if score.shape[0] == 1:
decisions = decisions[0]
score = score.flatten()
return decisions, score