-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathbuild_spk_models.py
281 lines (229 loc) · 10.6 KB
/
build_spk_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
## Copyright (C) 2019, Guangke Chen <[email protected]>.
## This program is licenced under the BSD 2-Clause licence
## contained in the LICENCE file in this directory.
from ivector_PLDA_kaldiHelper import ivector_PLDA_kaldiHelper
from gmm_ubm_kaldiHelper import gmm_ubm_kaldiHelper
import os
import numpy as np
import subprocess
import shlex
import pickle
import shutil
"""
This file generates speaker unique model for each speaker in the enrollment-set.
Each speaker model is a list dumped by pickle. The list contains the following items:
(1) spk id
(2) utt id of enrollment voice
(3) speaker identity location (absolute path):
data type: String
remarks: for GMM-UBM, speaker identity is a GMM obtained by updating diagonal UBM via MAP algorithm.
for ivector-PLDA, speaker identity is an identity vector called ivector extracted by ivector-extractor (final.ie in kaldi).
(4) z-norm mean value
data type: float
remarks:
(5) z-norm std value
data type: float
remarks:
"""
''' adjustable setting
'''
n_jobs = 1
debug = False # whether display log information from kaldi on terminal
enroll_dir = "./data/enrollment-set" # voice data for enrollment
z_norm_dir = "./data/z-norm-set" # voice data for z norm
pre_model_dir = "./pre-models"
model_dir = "./model"
if not os.path.exists(model_dir):
os.makedirs(model_dir)
audio_dir = os.path.abspath("./audio-build-model-iv")
if not os.path.exists(audio_dir):
os.makedirs(audio_dir)
mfcc_dir = os.path.abspath("./mfcc-build-model-iv")
if not os.path.exists(mfcc_dir):
os.makedirs(mfcc_dir)
log_dir = os.path.abspath("./log-build-model-iv")
if not os.path.exists(log_dir):
os.makedirs(log_dir)
ivector_dir = os.path.abspath("./ivector-build-model-iv")
if not os.path.exists(ivector_dir):
os.makedirs(ivector_dir)
audio_dir_gmm = os.path.abspath("./audio-build-model-gmm")
if not os.path.exists(audio_dir_gmm):
os.makedirs(audio_dir_gmm)
mfcc_dir_gmm = os.path.abspath("./mfcc-build-model-gmm")
if not os.path.exists(mfcc_dir_gmm):
os.makedirs(mfcc_dir_gmm)
log_dir_gmm = os.path.abspath("./log-build-model-gmm")
if not os.path.exists(log_dir_gmm):
os.makedirs(log_dir_gmm)
score_dir = os.path.abspath("./score-build-model-gmm")
if not os.path.exists(score_dir):
os.makedirs(score_dir)
trials = ivector_dir + "/trials"
scores_file = ivector_dir + "/scores"
ivector_scp = ivector_dir + "/ivector.scp"
feats_scp = audio_dir + "/feats.scp"
vad_scp = audio_dir + "/vad.scp"
audio_iter = os.listdir(enroll_dir)
enroll_utt_id = []
enroll_spk_id = []
enroll_utt_path = []
for i, audio_name in enumerate(audio_iter):
utt_id = audio_name.split(".")[0]
spk_id = utt_id.split("-")[0]
path = os.path.join(enroll_dir, audio_name)
enroll_utt_path.append(path)
enroll_utt_id.append(utt_id)
enroll_spk_id.append(spk_id)
audio_iter = os.listdir(z_norm_dir)
z_norm_utt_id = []
z_norm_spk_id = []
z_norm_utt_path = []
for i, audio_name in enumerate(audio_iter):
utt_id = audio_name.split(".")[0]
spk_id = utt_id.split("-")[0]
path = os.path.join(z_norm_dir, audio_name)
z_norm_utt_path.append(path)
z_norm_utt_id.append(utt_id)
z_norm_spk_id.append(spk_id)
audio_path_list = (enroll_utt_path + z_norm_utt_path)
spk_id_list = (enroll_spk_id + z_norm_spk_id)
utt_id_list = (enroll_utt_id + z_norm_utt_id)
''' step 1: generate ivector identity (stored in ivector_dir) and corresponding speaker model (stored as model/XX.iv)
'''
print("----- step 1: generate ivector identity and corresponding speaker model -----")
iv_helper = ivector_PLDA_kaldiHelper(audio_dir=audio_dir, mfcc_dir=mfcc_dir, log_dir=log_dir, ivector_dir=ivector_dir)
print("--- extracting and scoring ---")
iv_helper.score_existing(audio_path_list, enroll_utt_id, spk_id_list=spk_id_list,
utt_id_list=utt_id_list, test_utt_id=z_norm_utt_id,
n_jobs=n_jobs, flag=1, debug=debug)
print("--- extracting and scoring done---")
print("--- resolve score and obtain z norm mean and std value ---")
scores_mat = np.loadtxt(scores_file, dtype=str)
train_utt_id = scores_mat[:, 0]
test_utt_id_scoring = scores_mat[:, 1]
score = scores_mat[:, 2].astype(np.float64)
train_spk_id = np.array([utt_id.split("-")[0] for utt_id in train_utt_id])
test_spk_id_scoring = np.array([utt_id.split("-")[0] for utt_id in test_utt_id_scoring])
z_norm_means = np.zeros(len(enroll_utt_id), dtype=np.float64)
z_norm_stds = np.zeros(len(enroll_utt_id), dtype=np.float64)
for i, id in enumerate(enroll_spk_id):
index = np.argwhere(train_spk_id == id).flatten()
mean = np.mean(score[index])
std = np.std(score[index])
z_norm_means[i] = mean
z_norm_stds[i] = std
print("--- resolve score, and obtain z norm mean and std value done ---")
print("--- dump speaker unique model ---")
for i, utt_id in enumerate(enroll_utt_id):
spk_id = enroll_spk_id[i]
z_norm_mean = z_norm_means[i]
z_norm_std = z_norm_stds[i]
ivectors_utt_location = np.loadtxt(ivector_scp, dtype=str)
ivectors_utt = ivectors_utt_location[:, 0]
ivectors_location = ivectors_utt_location[:, 1]
identity_location = os.path.abspath(
ivectors_location[np.argwhere(ivectors_utt == utt_id).flatten()[0]]) # use absolute path
spk_unique_model = [spk_id, utt_id, identity_location, z_norm_mean, z_norm_std]
print(spk_unique_model),
with open(model_dir + "/" + spk_id + ".iv", "wb") as writer:
pickle.dump(spk_unique_model, writer, protocol=-1)
print("--- dump speaker unique model done ---")
print("----- step 1: generate ivector identity and corresponding speaker model done -----")
''' step 2: generate gmm identity (stored as model/XX-identity.gmm) and corrsponding speaker model (stored as model/XX.gmm)
'''
print("----- step 2: generate gmm identity and corresponding speaker model -----")
dubm = os.path.abspath(os.path.join(pre_model_dir, "final.dubm"))
delta_opts_file = os.path.join(pre_model_dir, "delta_opts")
with open(delta_opts_file, "r") as reader:
delta_opts = reader.read()[:-1]
update_flags_str = "m" # only update the mean vectors of gmm
print("--- obtaining gmm identity by updating ubm via MAP ---")
tmp_spk_feats_scp = audio_dir + "/feats_spk.scp"
tmp_spk_vad_scp = audio_dir + "/vad_spk.scp"
tmp_spk_acc_file = audio_dir + "/gmm_map_acc.acc"
feats_utt_location = np.loadtxt(feats_scp, dtype=str)
feats_utt = feats_utt_location[:, 0]
feats_location = feats_utt_location[:, 1]
vad_utt_location = np.loadtxt(vad_scp, dtype=str)
vad_utt = vad_utt_location[:, 0]
vad_location = vad_utt_location[:, 1]
for spk_id, utt_id in zip(enroll_spk_id, enroll_utt_id):
index = np.argwhere(feats_utt == utt_id).flatten()[0]
location = feats_location[index]
spk_feats_scp_content = utt_id + " " + location + "\n"
with open(tmp_spk_feats_scp, "w") as writer:
writer.write(spk_feats_scp_content)
index = np.argwhere(vad_utt == utt_id).flatten()[0]
location = vad_location[index]
spk_vad_scp_content = utt_id + " " + location + "\n"
with open(tmp_spk_vad_scp, "w") as writer:
writer.write(spk_vad_scp_content)
add_deltas = ("add-deltas " + delta_opts + " scp:" + tmp_spk_feats_scp + " ark:- |")
apply_cmvn = "apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 ark:- ark:- |"
select_voiced_frame = ("select-voiced-frames ark:- scp,s,cs:" + tmp_spk_vad_scp + " ark:- |")
feats = ("ark,s,cs:" + add_deltas + " " + apply_cmvn + " " + select_voiced_frame)
acc_stats_command = ("gmm-global-acc-stats --binary=false --update-flags=" +
update_flags_str + " " +
dubm + " " +
shlex.quote(feats) + " " +
tmp_spk_acc_file)
args = shlex.split(acc_stats_command)
p = subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
output_model = model_dir + "/" + spk_id + "-identity.gmm"
map_command = ("gmm-global-est-map --update-flags=" +
update_flags_str + " " +
dubm + " " +
tmp_spk_acc_file + " " +
output_model)
args = shlex.split(map_command)
p = subprocess.Popen(args, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
p.wait()
# delete all the tmp file
os.remove(tmp_spk_feats_scp)
os.remove(tmp_spk_vad_scp)
os.remove(tmp_spk_acc_file)
print("--- obtaining gmm identity by updating ubm via MAP done ---")
gmm_helper = gmm_ubm_kaldiHelper(pre_model_dir=pre_model_dir, audio_dir=audio_dir_gmm,
mfcc_dir=mfcc_dir_gmm, log_dir=log_dir_gmm, score_dir=score_dir)
model_path_list = []
for spk_id in enroll_spk_id:
model_path = model_dir + "/" + spk_id + "-identity.gmm"
model_path_list.append(model_path)
print("--- calculate z-norm mean, z-norm std ---")
# clear directory, otherwise kaldi may not keep all the audios to be scored.
if os.path.exists(audio_dir_gmm):
shutil.rmtree(audio_dir_gmm)
if os.path.exists(mfcc_dir_gmm):
shutil.rmtree(mfcc_dir_gmm)
if os.path.exists(log_dir_gmm):
shutil.rmtree(log_dir_gmm)
if os.path.exists(score_dir):
shutil.rmtree(score_dir)
if not os.path.exists(audio_dir_gmm):
os.makedirs(audio_dir_gmm)
if not os.path.exists(mfcc_dir_gmm):
os.makedirs(mfcc_dir_gmm)
if not os.path.exists(log_dir_gmm):
os.makedirs(log_dir_gmm)
if not os.path.exists(score_dir):
os.makedirs(score_dir)
''' calculate z-norm and z-std. Note that z-norm is only used in CSI. IN SV and OSI, we use UBM norm.
'''
score_array = gmm_helper.score_existing(model_path_list, z_norm_utt_path, n_jobs=n_jobs, debug=debug)
z_norm_means = np.mean(score_array, axis=0).flatten()
z_norm_stds = np.std(score_array, axis=0).flatten()
print("--- calculate z-norm mean, z-norm std done ---")
print(" --- dump speaker unique model --- ")
for i, spk_id in enumerate(enroll_spk_id):
utt_id = enroll_utt_id[i]
identity_location = os.path.abspath(model_dir + "/" + spk_id + "-identity.gmm")
z_norm_mean = z_norm_means[i]
z_norm_std = z_norm_stds[i]
spk_unique_model = [spk_id, utt_id, identity_location, z_norm_mean, z_norm_std]
print(spk_unique_model),
with open(model_dir + "/" + spk_id + ".gmm", "wb") as writer:
pickle.dump(spk_unique_model, writer, protocol=-1)
print(" --- dump speaker unique model done --- ")
print("----- step 2: generate gmm identity and corresponding speaker model done -----")