-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeak_detection_qa.Rmd
1009 lines (894 loc) · 46.3 KB
/
peak_detection_qa.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Quality assessment of the CHRIS untargeted peak detection"
author: "Johannes Rainer"
output:
BiocStyle::html_document:
toc: true
number_sections: false
toc_float: true
bibliography: references.bib
csl: biomed-central.csl
---
```{r biocstyle, echo = FALSE, results = "asis" }
library(BiocStyle)
BiocStyle::markdown()
knitr::opts_chunk$set(message = FALSE, warning = FALSE, dev = c("png", "pdf"))
```
**Modified**: `r file.info("peak_detection_qa.Rmd")$mtime`<br />
**Compiled**: `r date()`
```{r settings, echo = FALSE}
## Set general options
options(useFancyQuotes = FALSE)
set.seed(123)
## Define paths:
FILE_NAME <- "peak_detection_qa"
## Path to save the images; remove all old images.
IMAGE_PATH <- paste0("images/", FILE_NAME, "/")
if (dir.exists(IMAGE_PATH)) unlink(IMAGE_PATH, recursive = TRUE, force = TRUE)
dir.create(IMAGE_PATH, recursive = TRUE, showWarnings = FALSE)
## Path to store RData files
RDATA_PATH <- paste0("data/RData/", FILE_NAME, "/")
dir.create(RDATA_PATH, recursive = TRUE, showWarnings = FALSE)
## Get the number of cpus allocated or fall back to 3
ncores <- as.integer(Sys.getenv("SLURM_JOB_CPUS_PER_NODE", 4))
rt_cut <- 340
MZML_PATH <- "/data/massspec/mzML/"
if (!dir.exists(MZML_PATH))
stop("Can not find the directory with the mzML files: ", MZML_PATH)
```
# Introduction
In this document we perform a quality assessment of the peak detection step of
the CHRIS untargeted metabolomics data (defined and performed in
[peak_detection.Rmd](peak_detection.Rmd). The quality assessment is performed on
the QC samples from each batch of the data set, which represent repeated
measurement of the same original samples (the *CHRIS POOL*). Also, retention
time drifts and intensity differences are evaluated on chromatographic peaks
representing signal from internal standards or a set of known compounds (the
lab-specific standards).
# Data import
We next load all required libraries and the data. The full data set is reduced
to only QC samples.
```{r libraries}
library(xcms)
library(Rdisop)
library(pander)
library(RColorBrewer)
library(MetaboCoreUtils)
library(CompMetaboTools)
register(bpstart(MulticoreParam(ncores - 1L)))
load("data/RData/peak_detection/data_pos_ref.RData")
blnk_pos <- filterFile(data_pos, file = which(data_pos$type == "BLANK"))
qc_pos <- filterFile(data_pos, file = which(data_pos$type == "QC"))
rm(data_pos)
load("data/RData/peak_detection/data_neg_ref.RData")
blnk_neg <- filterFile(data_neg, file = which(data_neg$type == "BLANK"))
qc_neg <- filterFile(data_neg, file = which(data_neg$type == "QC"))
rm(data_neg)
## Load the base peak chromatogram data
load("data/RData/peak_detection/bpc_pos.RData")
bpc_qc_pos <- bpc_pos[, which(bpc_pos$type == "QC")]
rm(bpc_pos)
load("data/RData/peak_detection/bpc_neg.RData")
bpc_qc_neg <- bpc_neg[, which(bpc_neg$type == "QC")]
rm(bpc_neg)
## At last define colors for each batch.
btches <- union(unique(qc_pos$batch), unique(qc_neg$batch))
## Ordering can be tricky because we have 12 and 104, so 104 would be
## ordered before 12.
btch_mod <- sapply(btches, function(x) {
tmp <- strsplit(x, "_")[[1L]]
paste0(tmp[1L], "_",
ifelse(nchar(tmp[2L]) == 2L, yes = "0", no = ""),
tmp[2L])
})
btches <- btches[order(btch_mod)]
col_batch <- rainbow(length(btches))
names(col_batch) <- btches
```
# Global quality assessment
For the global quality assessment we evaluate and compare the signal in QC
samples across all batches. At first we compare the average number of identified
chromatographic peaks in QC samples per batch.
```{r peak-counts, echo = FALSE, fig.path = IMAGE_PATH, fig.width = 7, fig.height = 7, fig.cap = "Average number of detected peaks in QC samples per batch. Batches are ordered by measurement time."}
label_year <- function(x, ypos = 10000) {
yrs <- vapply(strsplit(names(x), "_"),
function(x) as.integer(x[1]), integer(1))
year_change <- c(1, which(diff(yrs) > 0))
abline(v = year_change, lty = 2)
text(x = year_change, y = rep(ypos, length(year_change)),
labels = yrs[year_change + 1], pos = 4)
}
pks_pos <- table(factor(as.integer(chromPeaks(qc_pos)[, "sample"]),
levels = seq_along(fileNames(qc_pos))))
pks_pos <- split(pks_pos, f = qc_pos$batch)
pks_pos <- vapply(pks_pos, mean, numeric(1))
## negative
pks_neg <- table(factor(as.integer(chromPeaks(qc_neg)[, "sample"]),
levels = seq_along(fileNames(qc_neg))))
pks_neg <- split(pks_neg, f = qc_neg$batch)
pks_neg <- vapply(pks_neg, mean, numeric(1))
par(mfrow = c(2, 1), mar = c(1, 4.5, 1, 1))
plot(y = pks_pos, x = seq_along(pks_pos), bg = col_batch[names(pks_pos)],
main = "positive polarity", xaxt = "n", ylab = "average peak count",
pch = 21, xlab = "")
grid()
label_year(pks_pos, ypos = 10000)
plot(y = pks_neg, x = seq_along(pks_neg), bg = col_batch[names(pks_neg)],
main = "negative polarity", xaxt = "n", ylab = "average peak count",
pch = 21, xlab = "")
grid()
label_year(pks_neg, ypos = 9000)
```
The average number of identified peaks in QC samples varies considerably between
batches (over time). The highest number was detected in the last four batches
from 2017. The number of peaks per individual QC sample matches well with the
average number per batch (data not shown here). Note that this is related to the
average intensity across batches which we plot below.
```{r peak-count-individual-qc-samples, echo = FALSE}
## Peak counts for individual QC samples.
png("peak-count-qc-samples.png", width = 18, height = 8, units = "cm",
pointsize = 4, res = 300)
year_change <- c(1, which(diff(as.numeric(qc_pos$year)) > 0) + 1)
intos <- split(log2(chromPeaks(qc_pos)[, "into"]),
chromPeaks(qc_pos)[, "sample"])
par(mfrow = c(2, 1), mar = c(2, 4.3, 1.5, 0.5))
tmp <- barplot(lengths(intos), col = col_batch[qc_pos$batch],
ylab = "peak count", main = "QC samples, positive polarity",
xaxt = "n", border = "#00000040")
abline(v = tmp[year_change, 1], lty = 2)
text(x = tmp[year_change, ], y = rep(10000, length(year_change)),
labels = qc_pos$year[year_change], pos = 4)
## Negative polarity
year_change <- c(1, which(diff(as.numeric(qc_neg$year)) > 0) + 1)
intos <- split(log2(chromPeaks(qc_neg)[, "into"]),
chromPeaks(qc_neg)[, "sample"])
tmp <- barplot(lengths(intos), col = col_batch[qc_neg$batch],
ylab = "peak count", main = "QC samples, negative polarity",
xaxt = "n", border = "#00000040")
abline(v = tmp[year_change, 1], lty = 2)
text(x = tmp[year_change, ], y = rep(9000, length(year_change)),
labels = qc_neg$year[year_change], pos = 4)
dev.off()
```
```{r bpc-boxplots-qc-samples, fig.path = IMAGE_PATH, echo = FALSE, fig.width = 12, fig.height = 8, fig.cap = "Per-sample base peak chromatogram (BPC) intensity distribution."}
## Generate the BPC signal distribution.
ints <- lapply(bpc_qc_pos, intensity)
ints <- lapply(ints, log2)
par(mar = c(2, 4.3, 1.5, 0.5), mfrow = c(2, 1))
tmp <- boxplot(ints, varwidth = TRUE, col = col_batch[bpc_qc_pos$batch],
outline = FALSE, main = "QC samples",
ylab = expression(log[2]~base~peak~signal),
border = "#00000040")
year_change <- c(1, which(diff(as.numeric(bpc_qc_pos$year)) > 0) + 1)
abline(v = year_change, lty = 2)
text(x = year_change, y = rep(19, length(year_change)),
labels = bpc_qc_pos$year[year_change], pos = 4)
## Neg polarity
ints <- lapply(bpc_qc_neg, intensity)
ints <- lapply(ints, log2)
tmp <- boxplot(ints, varwidth = TRUE, col = col_batch[bpc_qc_neg$batch],
outline = FALSE, main = "QC samples, negative polarity",
ylab = expression(log[2]~base~peak~signal),
border = "#00000040")
year_change <- c(1, which(diff(as.numeric(bpc_qc_neg$year)) > 0) + 1)
abline(v = year_change, lty = 2)
text(x = year_change, y = rep(18, length(year_change)),
labels = bpc_qc_neg$year[year_change], pos = 4)
```
Positive and negative mode data was not generated at the same (or consecutive)
time which explains the differences in drifts observed for the base peak signal
in positive and negative data (see Figure above).
At last we create also the BPC for positive and negative data.
```{r bpc-plot-qc-samples, fig.path = IMAGE_PATH, echo = FALSE, fig.width = 12, fig.height = 8, fig.cap = "Base peak chromatograms."}
par(mar = c(4.5, 4.3, 1.5, 0.5), mfrow = c(2, 1))
plot(bpc_qc_pos, col = paste0(col_batch[bpc_qc_pos$batch], 20),
main = "BPC, QC samples, positive polarity")
plot(bpc_qc_neg, col = paste0(col_batch[bpc_qc_neg$batch], 20),
main = "BPC, QC samples, negative polarity")
```
The BPC look more or less similar, but some drifts are observable.
Next we specifically evaluate the signal from internal standards and lab
standards.
## Internal standards
Next we evaluate the signal of peaks for internal standards in the data set. To
this end we first load the definition of internal standards (i.e. their expected
m/z and retention time), identify chromatographic peaks in the data set
potentially matching these and plot this data (code not shown).
```{r is, echo = FALSE, eval = TRUE}
is_info <- read.table(
"https://raw.githubusercontent.com/EuracBiomedicalResearch/lcms-standards/master/data/internal_standards.txt",
sep = "\t", header = TRUE, as.is = TRUE)
rownames(is_info) <- is_info$name
is_info <- is_info[order(is_info$name), ]
is_info$mzneut = NA
is_info$mz_ion_pos = NA
is_info$mz_ion_neg = NA
for (i in seq(nrow(is_info))) {
if (grepl("C", is_info$formula[i])){
is_info$mzneut[i] <- getMolecule(
as.character(is_info$formula[i]))$exactmass
} else
is_info$mzneut[i] = as.numeric(is_info$formula[i])
## Calculate also the m/z
if (!is.na(is_info$POS[i]))
is_info$mz_ion_pos[i] <-
mass2mz(is_info$mzneut[i], adduct = is_info$POS[i])[1, 1]
if (!is.na(is_info$NEG[i]))
is_info$mz_ion_neg[i] <-
mass2mz(is_info$mzneut[i], adduct = is_info$NEG[i])[1, 1]
}
is_pos <- is_info[!is.na(is_info$mz_ion_pos), ]
is_pos$mz_ion <- is_pos$mz_ion_pos
is_neg <- is_info[!is.na(is_info$mz_ion_neg), ]
is_neg$mz_ion <- is_neg$mz_ion_neg
plot_chrs <- function(x, dir, prefix = "IS-", suffix = "_POS", rect = TRUE) {
sample_colors <- col_batch[x$batch]
for (i in seq_len(nrow(x))) {
cmpname <- fData(x)$name[i]
filename <- paste0(dr, prefix, gsub("%", "p", cmpname, fixed = TRUE),
suffix, ".png")
png(file = filename, width = 16, height = 8, units = "cm",
res = 300, pointsize = 4)
chr <- x[i, ]
pks <- chromPeaks(chr)
plot(chr, col = "#00000040",
main = paste0(cmpname, ": ",
format(mz(chr)[1], digits = 6), "-",
format(mz(chr)[2], digits = 6)),
peakCol = paste0(sample_colors[pks[, "column"]], 50),
peakBg = paste0(sample_colors[pks[, "column"]], 10))
## This is just to indicate identified peaks with a rectangle.
if (rect)
xcms:::.add_chromatogram_peaks(
chr, pks,
col = paste0(sample_colors[pks[, "column"]], 10),
bg = NA,
type = "rectangle")
abline(v = fData(x)$RT[i])
dev.off()
}
}
is_pos_mz_rt <- chromPeakArea(qc_pos, mz = is_pos$mz_ion, rt = is_pos$RT,
diffRt = 40, ppm = 10)
## is_pos_mz_rt <- peak_regions_for_mz_rt(
## qc_pos, mz = is_pos$mz_ion, rt = is_pos$RT)
is_pos <- is_pos[!is.na(is_pos_mz_rt[, "mzmin"]), ]
is_pos_mz_rt <- is_pos_mz_rt[!is.na(is_pos_mz_rt[, "mzmin"]), ]
## Extract the ion chromatogram for each standard
rtr <- is_pos_mz_rt[, c("rtmin", "rtmax")]
rtr[, 1] <- rtr[, 1] - 10
rtr[, 2] <- rtr[, 2] + 10
is_pos_chr <- chromatogram(qc_pos, mz = is_pos_mz_rt[, c("mzmin", "mzmax")],
rt = rtr, aggregationFun = "max")
fData(is_pos_chr) <- cbind(
fData(is_pos_chr), is_pos[, c("name", "abbreviation", "formula",
"POS", "RT")])
## Plot the extracted ion chromatograms
dr <- paste0(IMAGE_PATH, "peakdetection/")
dir.create(dr, recursive = TRUE, showWarnings = FALSE)
plot_chrs(is_pos_chr, dr)
## Define the rt window for standards that look ~ OK.
is_pos$rtmin <- NA_real_
is_pos$rtmax <- NA_real_
is_pos$rtmin[is_pos$name == "Glycine (13C2, 99%; 15N, 99%)"] <- 165
is_pos$rtmax[is_pos$name == "Glycine (13C2, 99%; 15N, 99%)"] <- 183
is_pos$rtmin[is_pos$name == "L-Alanine (13C3, 99%; 15N, 99%)"] <- 160
is_pos$rtmax[is_pos$name == "L-Alanine (13C3, 99%; 15N, 99%)"] <- 180
is_pos$rtmin[is_pos$name == "L-Arginine HCl (13C6, 99%; 15N4, 99%)"] <- 165
is_pos$rtmax[is_pos$name == "L-Arginine HCl (13C6, 99%; 15N4, 99%)"] <- 220
is_pos$rtmin[is_pos$name == "L-Aspartic acid (13C4, 99%; 15N, 99%)"] <- 170
is_pos$rtmax[is_pos$name == "L-Aspartic acid (13C4, 99%; 15N, 99%)"] <- 210
is_pos$rtmin[is_pos$name == "L-Cystine (13C6, 99%; 15N2, 99%)"] <- 205
is_pos$rtmax[is_pos$name == "L-Cystine (13C6, 99%; 15N2, 99%)"] <- 230
is_pos$rtmin[is_pos$name == "L-Glutamic acid (13C5, 99%; 15N, 99%)"] <- 158
is_pos$rtmax[is_pos$name == "L-Glutamic acid (13C5, 99%; 15N, 99%)"] <- 200
is_pos$rtmin[is_pos$name == "L-Histidine HCl H2O (13C6; 15N3, 99%)"] <- 165
is_pos$rtmax[is_pos$name == "L-Histidine HCl H2O (13C6; 15N3, 99%)"] <- 240
is_pos$rtmin[is_pos$name == "L-Lysine 2HCl (13C6, 99%; 15N2, 99%)"] <- 172
is_pos$rtmax[is_pos$name == "L-Lysine 2HCl (13C6, 99%; 15N2, 99%)"] <- 215
is_pos$rtmin[is_pos$name == "L-Methionine (13C5, 99%; 15N, 99%)"] <- 150
is_pos$rtmax[is_pos$name == "L-Methionine (13C5, 99%; 15N, 99%)"] <- 165
is_pos$rtmin[is_pos$name == "L-Phenylalanine (13C9, 99%; 15N, 99%)"] <- 135
is_pos$rtmax[is_pos$name == "L-Phenylalanine (13C9, 99%; 15N, 99%)"] <- 160
is_pos$rtmin[is_pos$name == "L-Proline (13C5, 99%; 15N, 99%)"] <- 158
is_pos$rtmax[is_pos$name == "L-Proline (13C5, 99%; 15N, 99%)"] <- 185
is_pos$rtmin[is_pos$name == "L-Serine (13C3, 99%; 15N, 99%)"] <- 175
is_pos$rtmax[is_pos$name == "L-Serine (13C3, 99%; 15N, 99%)"] <- 195
is_pos$rtmin[is_pos$name == "L-Threonine (13C4, 99%; 15N, 99%)"] <- 165
is_pos$rtmax[is_pos$name == "L-Threonine (13C4, 99%; 15N, 99%)"] <- 190
is_pos$rtmin[is_pos$name == "L-Tyrosine (13C9, 99%; 15N, 99%)"] <- 155
is_pos$rtmax[is_pos$name == "L-Tyrosine (13C9, 99%; 15N, 99%)"] <- 185
is_pos <- is_pos[!is.na(is_pos$rtmin), ]
## Re-create the m/z and rt range matrix
is_pos_mz_rt <- chromPeakArea(qc_pos, mz = is_pos$mz_ion, ppm = 10,
rt = is_pos[, c("rtmin", "rtmax")], diffRt = 0)
is_pos_chr <- chromatogram(qc_pos, mz = is_pos_mz_rt[, c("mzmin", "mzmax")],
rt = is_pos_mz_rt[, c("rtmin", "rtmax")],
aggregationFun = "max", include = "apex_within")
fData(is_pos_chr) <- cbind(
fData(is_pos_chr), is_pos[, c("name", "abbreviation", "formula",
"POS", "RT")])
## For each IS (row), in each sample (column) keep the chrom peak with the
## highest peak.
is_pos_chr <- filterChromPeaks(is_pos_chr, method = "keepTop",
n = 1L, order = "maxo")
save(is_pos_chr, file = paste0(RDATA_PATH, "is_pos_chr.RData"))
## Plot again.
plot_chrs(is_pos_chr, dr, prefix = "IS-", suffix = "-refined_POS", rect = FALSE)
## --------------------------------------------------
## Repeat for negative polarity.
is_neg_mz_rt <- chromPeakArea(qc_neg, mz = is_neg$mz_ion, rt = is_neg$RT,
diffRt = 40, ppm = 10)
is_neg <- is_neg[!is.na(is_neg_mz_rt[, "mzmin"]), ]
is_neg_mz_rt <- is_neg_mz_rt[!is.na(is_neg_mz_rt[, "mzmin"]), ]
## Extract the ion chromatogram for each standard
rtr <- is_neg_mz_rt[, c("rtmin", "rtmax")]
rtr[, 1] <- rtr[, 1] - 10
rtr[, 2] <- rtr[, 2] + 10
is_neg_chr <- chromatogram(qc_neg, mz = is_neg_mz_rt[, c("mzmin", "mzmax")],
rt = rtr, aggregationFun = "max")
fData(is_neg_chr) <- cbind(
fData(is_neg_chr), is_neg[, c("name", "abbreviation", "formula",
"NEG", "RT")])
## Plot the extracted ion chromatograms
plot_chrs(is_neg_chr, dr, prefix = "IS-", suffix = "_NEG")
## Define the rt window for standards that look ~ OK.
is_neg$rtmin <- NA_real_
is_neg$rtmax <- NA_real_
is_neg$rtmin[is_neg$name == "Creatinine (N-Methhyl_D3)"] <- 120
is_neg$rtmax[is_neg$name == "Creatinine (N-Methhyl_D3)"] <- 145
is_neg$rtmin[is_neg$name == "L-Alanine (13C3, 99%; 15N, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Alanine (13C3, 99%; 15N, 99%)"] <- 187
is_neg$rtmin[is_neg$name == "L-Arginine HCl (13C6, 99%; 15N4, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Arginine HCl (13C6, 99%; 15N4, 99%)"] <- 200
is_neg$rtmin[is_neg$name == "L-Aspartic acid (13C4, 99%; 15N, 99%)"] <- 170
is_neg$rtmax[is_neg$name == "L-Aspartic acid (13C4, 99%; 15N, 99%)"] <- 200
is_neg$rtmin[is_neg$name == "L-Cystine (13C6, 99%; 15N2, 99%)"] <- 202
is_neg$rtmax[is_neg$name == "L-Cystine (13C6, 99%; 15N2, 99%)"] <- 230
is_neg$rtmin[is_neg$name == "L-Glutamic acid (13C5, 99%; 15N, 99%)"] <- 165
is_neg$rtmax[is_neg$name == "L-Glutamic acid (13C5, 99%; 15N, 99%)"] <- 200
is_neg$rtmin[is_neg$name == "L-Histidine HCl H2O (13C6; 15N3, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Histidine HCl H2O (13C6; 15N3, 99%)"] <- 205
is_neg$rtmin[is_neg$name == "L-Lysine 2HCl (13C6, 99%; 15N2, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Lysine 2HCl (13C6, 99%; 15N2, 99%)"] <- 205
is_neg$rtmin[is_neg$name == "L-Methionine (13C5, 99%; 15N, 99%)"] <- 155
is_neg$rtmax[is_neg$name == "L-Methionine (13C5, 99%; 15N, 99%)"] <- 170
is_neg$rtmin[is_neg$name == "L-Phenylalanine (13C9, 99%; 15N, 99%)"] <- 140
is_neg$rtmax[is_neg$name == "L-Phenylalanine (13C9, 99%; 15N, 99%)"] <- 161
is_neg$rtmin[is_neg$name == "L-Serine (13C3, 99%; 15N, 99%)"] <- 172
is_neg$rtmax[is_neg$name == "L-Serine (13C3, 99%; 15N, 99%)"] <- 190
is_neg$rtmin[is_neg$name == "L-Threonine (13C4, 99%; 15N, 99%)"] <- 163
is_neg$rtmax[is_neg$name == "L-Threonine (13C4, 99%; 15N, 99%)"] <- 183
is_neg$rtmin[is_neg$name == "L-Tyrosine (13C9, 99%; 15N, 99%)"] <- 160
is_neg$rtmax[is_neg$name == "L-Tyrosine (13C9, 99%; 15N, 99%)"] <- 175
is_neg$rtmin[is_neg$name == "L-Valine (13C5, 99%; 15N, 99%)"] <- 160
is_neg$rtmax[is_neg$name == "L-Valine (13C5, 99%; 15N, 99%)"] <- 175
is_neg <- is_neg[!is.na(is_neg$rtmin), ]
## Re-create the m/z and rt range matrix
is_neg_mz_rt <- chromPeakArea(qc_neg, mz = is_neg$mz_ion, ppm = 10,
rt = is_neg[, c("rtmin", "rtmax")], diffRt = 0)
is_neg_chr <- chromatogram(
qc_neg, mz = is_neg_mz_rt[, c("mzmin", "mzmax")],
rt = is_neg_mz_rt[, c("rtmin", "rtmax")],
aggregationFun = "max", include = "apex_within")
fData(is_neg_chr) <- cbind(
fData(is_neg_chr), is_neg[, c("name", "abbreviation", "formula",
"NEG", "RT")])
## For each IS (row), in each sample (column) keep the chrom peak with the
## highest peak.
is_neg_chr <- filterChromPeaks(is_neg_chr, method = "keepTop",
n = 1L, order = "maxo")
save(is_neg_chr, file = paste0(RDATA_PATH, "is_neg_chr.RData"))
## Plot again.
plot_chrs(is_neg_chr, dr, prefix = "IS-", suffix = "-refined_NEG", rect = FALSE)
```
Next we quantify the signal for the internal standards for each sample. For
samples in which more than one chromatographic peak is present in the retention
time region, the one with the higher signal is used. We're next evaluating the
retention time drifts and signal/abundance differences for the such defined
internal standard data sets (positive and negative polarity).
### Evaluating retention time drifts
In this section we evaluate drifts in retention times for the internal
standards. We calculate first for each standard the average retention time and
its standard deviation within each batch and calculate next the standard
deviation of the average retention times across batches.
```{r rt-sd-mean}
load(paste0(RDATA_PATH, "is_pos_chr.RData"))
load(paste0(RDATA_PATH, "is_neg_chr.RData"))
#' Per standard and batch summaries (mean and sd for into and rt
batch_summary <- function(x) {
tmp <- chromPeaks(x)
tmp <- data.frame(pData(x)[tmp[, "sample"],
c("batch", "year", "month", "day")], tmp)
## split by row/standard
tmpl <- split(tmp, tmp$row)
res <- lapply(tmpl, function(z) {
btch <- split(z, factor(z$batch,
levels = unique(z$batch, fromLast = TRUE)))
do.call(rbind, lapply(btch, function(vals) {
data.frame(batch = vals$batch[1L],
year = vals$year[1L],
month = vals$month[1L],
day = vals$day[1L],
row = vals$row[1L],
rt_mean = mean(vals$rt, na.rm = TRUE),
rt_sd = sd(vals$rt, na.rm = TRUE),
into_mean = mean(vals$into, na.rm = TRUE),
into_sd = sd(vals$into, na.rm = TRUE),
into_mean_log2 = mean(log2(vals$into), na.rm = TRUE),
into_sd_log2 = sd(log2(vals$into), na.rm = TRUE))
}))
})
res <- do.call(rbind, res)
res <- cbind(fData(x)[res$row, ], res)
rownames(res) <- NULL
res
}
batch_sum_pos <- batch_summary(is_pos_chr)
batch_sum_neg <- batch_summary(is_neg_chr)
```
```{r is-rt-within-between-batch, fig.path = IMAGE_PATH, fig.width = 8, fig.height = 4, fig.cap = "Evaluation of within and between batch retention time shifts. Each point represents one internal standard. X-axis: mean within-batch standard deviation of retention times. Y-axis: standard deviation of within-batch mean retention times.", echo = FALSE}
par(mfrow = c(1, 2))
tmp <- split(batch_sum_pos, batch_sum_pos$name)
## Calculate mean across within batch sd and
tmp_pos <- do.call(rbind, lapply(tmp, function(z) {
c(mean_sd = mean(z$rt_sd, na.rm = TRUE),
sd_mean = sd(z$rt_mean, na.rm = TRUE))
}))
plot(tmp_pos[, 1], tmp_pos[, 2], main = "positive polarity",
xlab = "average sd of RT", ylab = "sd of average RT")
tmp <- split(batch_sum_neg, batch_sum_neg$name)
## Calculate mean across within batch sd and
tmp_neg <- do.call(rbind, lapply(tmp, function(z) {
c(mean_sd = mean(z$rt_sd, na.rm = TRUE),
sd_mean = sd(z$rt_mean, na.rm = TRUE))
}))
plot(tmp_neg[, 1], tmp_neg[, 2], main = "negative polarity",
xlab = "average sd of RT", ylab = "sd of average RT")
```
As expected, the within-batch variation of retention times is on average much
smaller than the variation of the per-batch average retention time across the
data set. Three of the internal standards show exceptionally large variation
across batches. These are `r paste0(rownames(tmp_pos[order(tmp_pos[,
2]),])[1:3], collapse = ", ")` for positive and `r
paste0(rownames(tmp_neg[order(tmp_neg[, 2]),])[1:3], collapse = ", ")` for
negative polarity.
We next evaluate the retention time shifts for the individual standards. We base
this on the average retention time of each standard in each batch (since we've
shown above that the retention time shifts within each batch are much smaller
than between batches).
```{r is-rt-per-analyte-boxplot, fig.path = IMAGE_PATH, echo = FALSE, fig.width = 10, fig.height = 8, fig.cap = "Variation of internal standards' retention times across batches."}
batch_sum_pos_analyte <- split(batch_sum_pos, batch_sum_pos$name)
batch_sum_neg_analyte <- split(batch_sum_neg, batch_sum_neg$name)
rt_pos <- lapply(batch_sum_pos_analyte, function(z) z$rt_mean)
rt_pos <- rt_pos[order(vapply(rt_pos, mean, numeric(1)))]
rt_neg <- lapply(batch_sum_neg_analyte, function(z) z$rt_mean)
rt_neg <- rt_neg[order(vapply(rt_neg, mean, numeric(1)))]
par(mfrow = c(1, 2), mar = c(9, 4, 1, 0.5))
boxplot(rt_pos, las = 2, ylab = "RT", main = "positive polarity")
grid()
boxplot(rt_neg, las = 2, ylab = "RT", main = "negative polarity")
grid()
```
The variation in retention times seems to be larger for analytes eluting between
185 and 195 seconds. Next we investigate whether retention time shift are
*constant* per batch, i.e. whether all standards within a batch show the same
retention time shift.
```{r is-rt-per-analyte-lines, fig.path = IMAGE_PATH, echo = FALSE, fig.width = 10, fig.height = 12, fig.cap = "Per individual internal standard (within-batch average) retention time across batches."}
par(mfrow = c(2, 1), mar = c(7, 4.5, 1, 0.5))
btches <- unique(is_pos_chr$batch)
yl <- range(lapply(rt_pos, range))
xl <- c(1, length(btches))
plot(3, 3, pch = NA, xlim = xl, ylim = yl, xlab = "", xaxt = "n",
ylab = "RT", main = "positive polarity")
grid()
tmp <- lapply(batch_sum_pos_analyte,
function(z) points(x = match(z$batch, btches), y = z$rt_mean,
type = "l", col = "#00000060"))
axis(side = 1, at = seq_along(btches),
label = btches, las = 2)
btches <- unique(is_neg_chr$batch)
yl <- range(lapply(rt_neg, range))
xl <- c(1, length(btches))
plot(3, 3, pch = NA, xlim = xl, ylim = yl, xlab = "", xaxt = "n",
ylab = "RT", main = "negative polarity")
grid()
tmp <- lapply(batch_sum_neg_analyte,
function(z) points(x = match(z$batch, btches), y = z$rt_mean,
type = "l", col = "#00000060"))
axis(side = 1, at = seq_along(btches),
label = btches, las = 2)
```
The lines representing the retention times of individual internal standards show
about the same pattern across batches. Thus retention times of individual
standards appear to be affected by a similar shift within each batch. It should
hence be possible to align the samples without too large problems.
### Evaluating signal abundances
We next evaluate the variances of signal abundances within and between batches.
```{r is-into-within-between-batch, fig.path = IMAGE_PATH, fig.width = 8, fig.height = 4, fig.cap = "Evaluation of within and between batch intensity differences. Each point represents one internal standard. X-axis: mean within-batch standard deviation of intensities. Y-axis: standard deviation of within-batch mean intensities.", echo = FALSE}
par(mfrow = c(1, 2))
tmp <- split(batch_sum_pos, batch_sum_pos$name)
## Calculate mean across within batch sd and
tmp_pos <- do.call(rbind, lapply(tmp, function(z) {
c(mean_sd = mean(z$into_sd_log2, na.rm = TRUE),
sd_mean = sd(z$into_mean_log2, na.rm = TRUE))
}))
plot(tmp_pos[, 1], tmp_pos[, 2], main = "positive polarity",
xlab = "average sd of intensity", ylab = "sd of average intensity")
tmp <- split(batch_sum_neg, batch_sum_neg$name)
## Calculate mean across within batch sd and
tmp_neg <- do.call(rbind, lapply(tmp, function(z) {
c(mean_sd = mean(z$into_sd_log2, na.rm = TRUE),
sd_mean = sd(z$into_mean_log2, na.rm = TRUE))
}))
plot(tmp_neg[, 1], tmp_neg[, 2], main = "negative polarity",
xlab = "average sd of intensity", ylab = "sd of average intensity")
```
As expected, also the within-batch variation of intensities is on average much
smaller than the variation of the per-batch average intensities across the
data set. We consider the per-batch average intensities for each internal
standard for the further analyses.
We next evaluate the distribution of intensities for each internal standard
across the whole data set to evaluate whether some standards show a larger
variation than others.
```{r}
tmp <- split(batch_sum_pos$into_mean_log2, batch_sum_pos$name)
tmp <- tmp[order(vapply(tmp, mean, numeric(1)))]
par(mfrow = c(1, 2), mar = c(7, 4, 1, 0.5))
boxplot(tmp, las = 2, main = "positive polarity",
ylab = expression(log[2]~average~into))
grid(nx = NA, ny = NULL)
tmp <- split(batch_sum_neg$into_mean_log2, batch_sum_neg$name)
tmp <- tmp[order(vapply(tmp, mean, numeric(1)))]
boxplot(tmp, las = 2, main = "negative polarity",
ylab = expression(log[2]~average~into))
grid(nx = NA, ny = NULL)
```
While for positive polarity all internal standards seem to have about the same
variance, some standards exhibit a larger variance than others for the negative
polarity data. For both polarities it seems however that the variance is
independent of the absolute intensity (i.e. standards with lower intensity don't
have larger variance).
Next we evaluate whether the signal intensities of internal standards per batch
are related to the absolute signals measured for that batch. To this end we
compare the average intensity of internal standards per batch to the average
total ion current per sample as well as to the average intensity of the top 200
peaks with highest abundances per batch. Below we thus identify the 200 peaks
with highest intensities per sample and calculate per batch averages of these
(first taking the average across the 200 peaks per sample and then calculating
the average across all samples per batch).
```{r top200-peaks}
peaks_200_pos <- split(chromPeaks(qc_pos)[, "into"],
chromPeaks(qc_pos)[, "sample"]) |>
vapply(function(x) mean(sort(x, decreasing = TRUE)[seq_len(200)]), numeric(1))
peaks_200_neg <- split(chromPeaks(qc_neg)[, "into"],
chromPeaks(qc_neg)[, "sample"]) |>
vapply(function(x) mean(sort(x, decreasing = TRUE)[seq_len(200)]), numeric(1))
peaks_200_batch_pos <- vapply(split(peaks_200_pos, qc_pos$batch),
mean, numeric(1))
peaks_200_batch_neg <- vapply(split(peaks_200_neg, qc_neg$batch),
mean, numeric(1))
```
In addition we calculate the average total ion current of all files within a
batch.
```{r tic-signal, eval = FALSE}
load(paste0(RDATA_PATH, "tic_qc_pos.RData"))
load(paste0(RDATA_PATH, "tic_qc_neg.RData"))
tic_pos <- split(spectrapply(qc_pos, function(z) sum(intensity(z))),
qc_pos$batch) |>
vapply(mean, numeric(1))
tic_neg <- split(spectrapply(qc_neg, function(z) sum(intensity(z))),
qc_neg$batch) |>
vapply(mean, numeric(1))
```
```{r is-relationship-into-signal-batch, echo = FALSE, fig.path = IMAGE_PATH, fig.width = 8, fig.height = 8, fit.cap = "Relationship between per-batch average intensities of all internal standards and per-batch average intensity of the top 200 chromatographic peaks with highest abundance (left) and per-batch TIC (right)."}
## Average intensity across batch
par(mfrow = c(2, 2))
is_avg_batch_pos <- vapply(split(batch_sum_pos$into_mean_log2,
batch_sum_pos$batch),
mean, numeric(1))
plot(is_avg_batch_pos[names(peaks_200_batch_pos)], log2(peaks_200_batch_pos),
main = "positive polarity",
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
bg = paste0(col_batch[names(peaks_200_batch_pos)], 60), pch = 21)
grid()
L <- lm(log2(peaks_200_batch_pos) ~ is_avg_batch_pos)
abline(L)
legend("topleft", legend = paste0("R2 = ", round(summary(L)$r.squared, 2)))
plot(3, 3) # internal standards vs tic
## NEG
is_avg_batch_neg <- vapply(split(batch_sum_neg$into_mean_log2,
batch_sum_neg$batch),
mean, numeric(1))
plot(is_avg_batch_neg[names(peaks_200_batch_neg)], log2(peaks_200_batch_neg),
main = "negative polarity",
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
bg = paste0(col_batch[names(peaks_200_batch_neg)], 60), pch = 21)
grid()
L <- lm(log2(peaks_200_batch_neg) ~ is_avg_batch_neg)
abline(L)
legend("topleft", legend = paste0("R2 = ", round(summary(L)$r.squared, 2)))
plot(3, 3) # internal standards vs tic
```
A high correlation, especially for the positive polarity data, can be seen
between the average intensities of internal standards and the average abundance
of the top 200 chromatographic peaks with highest signal. The same relationship
is present also if individual samples are considered (no average across samples
within batch). This suggests that variability of internal standard measurements
between samples and batches is related to the total signal.
```{r is-relationship-into-signal-individual, echo = FALSE, fig.path = IMAGE_PATH, fig.width = 8, fig.height = 8, fit.cap = "Relationship between per-sample average intensities of all internal standards and per-sample average intensity of the top 200 chromatographic peaks with highest abundance."}
is_avg_pos <- split(log2(chromPeaks(is_pos_chr)[, "into"]),
chromPeaks(is_pos_chr)[, "sample"]) |>
vapply(mean, numeric(1))
is_avg_neg <- split(log2(chromPeaks(is_neg_chr)[, "into"]),
chromPeaks(is_neg_chr)[, "sample"]) |>
vapply(mean, numeric(1))
par(mfrow = c(1, 2))
plot(is_avg_pos, log2(peaks_200_pos),
main = "positive polarity",
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
bg = paste0(col_batch[is_pos_chr$batch], 60), pch = 21)
grid()
L <- lm(log2(peaks_200_pos) ~ is_avg_pos)
abline(L)
legend("topleft", legend = paste0("R2 = ", round(summary(L)$r.squared, 2)))
plot(is_avg_neg, log2(peaks_200_neg),
main = "negative polarity",
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
bg = paste0(col_batch[is_neg_chr$batch], 60), pch = 21)
grid()
L <- lm(log2(peaks_200_neg) ~ is_avg_neg)
abline(L)
legend("topleft", legend = paste0("R2 = ", round(summary(L)$r.squared, 2)))
```
In addition we create and export such correlation plots separately for each
internal standard (not displayed in this report). For some internal standards
a strong relationship is visible while for others it is not.
```{r is-relationship-into-signal-per-analyte}
nms <- union(batch_sum_pos$name, batch_sum_neg$name)
for (is in nms) {
filename <- paste0(IMAGE_PATH, "IS_", gsub("%", "p", is, fixed = TRUE),
"_signal_relationship.png")
png(file = filename, width = 16, height = 8, units = "cm",
res = 300, pointsize = 4)
par(mfrow = c(1, 2))
keep <- batch_sum_pos$name == is
if (any(keep)) {
is_signal <- batch_sum_pos[batch_sum_pos$name == is, ]
plot(is_signal$into_mean_log2,
log2(peaks_200_batch_pos[is_signal$batch]),
bg = paste0(col_batch[is_signal$batch], 80), pch = 21,
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
main = is)
} else plot(3, 3, pch = NA,
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
main = is)
grid()
keep <- batch_sum_neg$name == is
if (any(keep)) {
is_signal <- batch_sum_neg[batch_sum_neg$name == is, ]
plot(is_signal$into_mean_log2,
log2(peaks_200_batch_neg[is_signal$batch]),
bg = paste0(col_batch[is_signal$batch], 80), pch = 21,
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
main = is)
} else plot(3, 3, pch = NA,
xlab = expression(log[2]~signal[top200]),
ylab = expression(log[2]~signal[internal~standards]),
main = is)
grid()
dev.off()
}
```
TODO Summary.
So, summarizing.
- retention time shifts within batches are smaller than between
batches. Alignment should ideally be performed on the QC samples.
- extent of retention time shifts dependent on the rt: ranges with smaller
shifts and ranges with larger shifts (ion suppression/column overload?).
- variance in intensity levels seems to be related (for the largest part/most
internal standards) to absolute signal per sample. Also here, variance within
batch is lower than between batches.
## Lab standards
We repeat the analysis performed on the internal standards above also on the
*lab standards*, i.e. the set of standards that were used to optimize and
validate the LC-MS setup for the CHRIS study.
```{r std}
std_info <- read.table(
"https://raw.githubusercontent.com/EuracBiomedicalResearch/lcms-standards/master/data/standards_dilution.txt",
sep = "\t", header = TRUE, as.is = TRUE)
std_info <- unique(std_info[, -1])
rownames(std_info) <- std_info$name
std_info <- std_info[order(std_info$name), ]
std_info$mzneut = NA
std_info$mz_ion_pos = NA
std_info$mz_ion_neg = NA
for (i in seq(nrow(std_info))) {
if (grepl("C", std_info$formula[i])){
std_info$mzneut[i] <- getMolecule(
as.character(std_info$formula[i]))$exactmass
} else
std_info$mzneut[i] = as.numeric(std_info$formula[i])
## Calculate also the m/z
if (!is.na(std_info$POS[i]))
std_info$mz_ion_pos[i] <-
mass2mz(std_info$mzneut[i], adduct = std_info$POS[i])[1, 1]
if (!is.na(std_info$NEG[i]))
std_info$mz_ion_neg[i] <-
mass2mz(std_info$mzneut[i], adduct = std_info$NEG[i])[1, 1]
}
std_pos <- std_info[!is.na(std_info$mz_ion_pos), ]
std_pos$mz_ion <- std_pos$mz_ion_pos
std_neg <- std_info[!is.na(std_info$mz_ion_neg), ]
std_neg$mz_ion <- std_neg$mz_ion_neg
std_pos_mz_rt <- chromPeakArea(qc_pos, mz = std_pos$mz_ion, rt = std_pos$RT,
diffRt = 40, ppm = 10)
std_pos <- std_pos[!is.na(std_pos_mz_rt[, "mzmin"]), ]
std_pos_mz_rt <- std_pos_mz_rt[!is.na(std_pos_mz_rt[, "mzmin"]), ]
## Extract the ion chromatogram for each standard
rtr <- std_pos_mz_rt[, c("rtmin", "rtmax")]
rtr[, 1] <- rtr[, 1] - 10
rtr[, 2] <- rtr[, 2] + 10
std_pos_chr <- chromatogram(qc_pos, mz = std_pos_mz_rt[, c("mzmin", "mzmax")],
rt = rtr, aggregationFun = "max")
fData(std_pos_chr) <- cbind(
fData(std_pos_chr), std_pos[, c("name", "abbreviation", "formula",
"POS", "RT")])
## Plot the extracted ion chromatograms
dr <- paste0(IMAGE_PATH, "peakdetection/")
dir.create(dr, recursive = TRUE, showWarnings = FALSE)
plot_chrs(std_pos_chr, dr, prefix = "STD-")
## Define the rt window for standards that look ~ OK.
std_pos$rtmin <- NA_real_
std_pos$rtmax <- NA_real_
## Note: just assigning ranges for standards with a signal in MOST samples!
## Those with a * have a quite broad m/z range and should be rechecked
std_pos[std_pos$name == "1-Methylhistidine", c("rtmin", "rtmax")] <- c(165, 210)
std_pos[std_pos$name == "3-Methylhistidine", c("rtmin", "rtmax")] <- c(165, 210)
std_pos[std_pos$name == "8-Oxo-2-Deoxyguanosine", c("rtmin", "rtmax")] <- c(152, 170) # *
std_pos[std_pos$name == "Acetylalanine", c("rtmin", "rtmax")] <- c(33, 45)
std_pos[std_pos$name == "Acetylhistidine", c("rtmin", "rtmax")] <- c(171, 193)
std_pos[std_pos$name == "Adenine", c("rtmin", "rtmax")] <- c(165, 185)
std_pos[std_pos$name == "ADMA", c("rtmin", "rtmax")] <- c(163, 200)
std_pos[std_pos$name == "Alanine", c("rtmin", "rtmax")] <- c(158, 180)
std_pos[std_pos$name == "Arginine", c("rtmin", "rtmax")] <- c(165, 210) # *
std_pos[std_pos$name == "Asparagine", c("rtmin", "rtmax")] <- c(175, 195) # *
std_pos[std_pos$name == "Betaine", c("rtmin", "rtmax")] <- c(150, 170)
std_pos[std_pos$name == "Caffeine", c("rtmin", "rtmax")] <- c(32, 38) # *
std_pos[std_pos$name == "cGMP", c("rtmin", "rtmax")] <- c(170, 190)
std_pos[std_pos$name == "Citrulline", c("rtmin", "rtmax")] <- c(170, 195) # *
std_pos[std_pos$name == "Creatine", c("rtmin", "rtmax")] <- c(158, 185) # *
std_pos[std_pos$name == "Cystine", c("rtmin", "rtmax")] <- c(200, 220)
std_pos[std_pos$name == "Dimethylglycine", c("rtmin", "rtmax")] <- c(158, 180)
std_pos[std_pos$name == "Galactitol", c("rtmin", "rtmax")] <- c(155, 169) # *
std_pos[std_pos$name == "Glucuronic Acid", c("rtmin", "rtmax")] <- c(140, 153)
std_pos[std_pos$name == "Glutamine", c("rtmin", "rtmax")] <- c(165, 190) # *
std_pos[std_pos$name == "Glyceraldehyde 2-phosphate", c("rtmin", "rtmax")] <- c(180, 230)
std_pos[std_pos$name == "Glycero-phosphocholine", c("rtmin", "rtmax")] <- c(185, 200)
std_pos[std_pos$name == "Glycine", c("rtmin", "rtmax")] <- c(164, 185)
std_pos[std_pos$name == "Guanine", c("rtmin", "rtmax")] <- c(156, 170)
std_pos[std_pos$name == "Guanosine", c("rtmin", "rtmax")] <- c(157, 167)
std_pos[std_pos$name == "Histamine", c("rtmin", "rtmax")] <- c(175, 105)
std_pos[std_pos$name == "Histidine", c("rtmin", "rtmax")] <- c(170, 210)
std_pos[std_pos$name == "Hypoxanthine", c("rtmin", "rtmax")] <- c(100, 135)
std_pos[std_pos$name == "Indoleacetic acid", c("rtmin", "rtmax")] <- c(32, 38)
std_pos[std_pos$name == "Indolelactic acid", c("rtmin", "rtmax")] <- c(32, 45)
std_pos[std_pos$name == "Inosine", c("rtmin", "rtmax")] <- c(135, 155) # *
std_pos[std_pos$name == "L-Aspartic Acid", c("rtmin", "rtmax")] <- c(172, 195)
std_pos[std_pos$name == "L-Glutamic Acid", c("rtmin", "rtmax")] <- c(165, 185)
std_pos[std_pos$name == "Lysine", c("rtmin", "rtmax")] <- c(173, 210)
std_pos[std_pos$name == "Methionine", c("rtmin", "rtmax")] <- c(155, 169)
std_pos[std_pos$name == "Methioninesulfoxide", c("rtmin", "rtmax")] <- c(174, 190)
std_pos[std_pos$name == "Ornithine", c("rtmin", "rtmax")] <- c(175, 210)
std_pos[std_pos$name == "Proline", c("rtmin", "rtmax")] <- c(158, 180)
std_pos[std_pos$name == "Putrescine", c("rtmin", "rtmax")] <- c(150, 173)
std_pos[std_pos$name == "Salicylic acid", c("rtmin", "rtmax")] <- c(26, 36)
std_pos[std_pos$name == "SDMA", c("rtmin", "rtmax")] <- c(163, 200)
std_pos[std_pos$name == "Serine", c("rtmin", "rtmax")] <- c(171, 192)
std_pos[std_pos$name == "Sphingosine", c("rtmin", "rtmax")] <- c(28, 38)
std_pos[std_pos$name == "Taurine", c("rtmin", "rtmax")] <- c(165, 178)
std_pos[std_pos$name == "Threonine", c("rtmin", "rtmax")] <- c(164, 185)
std_pos[std_pos$name == "Tryptophan", c("rtmin", "rtmax")] <- c(140, 160) # *
std_pos[std_pos$name == "Tyrosine", c("rtmin", "rtmax")] <- c(159, 175)
std_pos[std_pos$name == "Valine", c("rtmin", "rtmax")] <- c(150, 172)
std_pos <- std_pos[!is.na(std_pos$rtmin), ]
## Re-create the m/z and rt range matrix
std_pos_mz_rt <- chromPeakArea(qc_pos, mz = std_pos$mz_ion, ppm = 10,
rt = std_pos[, c("rtmin", "rtmax")], diffRt = 0)
std_pos_chr <- chromatogram(qc_pos, mz = std_pos_mz_rt[, c("mzmin", "mzmax")],
rt = std_pos_mz_rt[, c("rtmin", "rtmax")],
aggregationFun = "max", include = "apex_within")
fData(std_pos_chr) <- cbind(
fData(std_pos_chr), std_pos[, c("name", "abbreviation", "formula",
"POS", "RT")])
## For each IS (row), in each sample (column) keep the chrom peak with the
## highest peak.
std_pos_chr <- filterChromPeaks(std_pos_chr, method = "keepTop",
n = 1L, order = "maxo")
save(std_pos_chr, file = paste0(RDATA_PATH, "std_pos_chr.RData"))
## Plot again.
plot_chrs(std_pos_chr, dr, prefix = "STD-",
suffix = "-refined_POS", rect = FALSE)
## --------------------------------------------------
## Repeat for negative polarity.
is_neg_mz_rt <- chromPeakArea(qc_neg, mz = is_neg$mz_ion, rt = is_neg$RT,
diffRt = 40, ppm = 10)
is_neg <- is_neg[!is.na(is_neg_mz_rt[, "mzmin"]), ]
is_neg_mz_rt <- is_neg_mz_rt[!is.na(is_neg_mz_rt[, "mzmin"]), ]
## Extract the ion chromatogram for each standard
rtr <- is_neg_mz_rt[, c("rtmin", "rtmax")]
rtr[, 1] <- rtr[, 1] - 10
rtr[, 2] <- rtr[, 2] + 10
is_neg_chr <- chromatogram(qc_neg, mz = is_neg_mz_rt[, c("mzmin", "mzmax")],
rt = rtr, aggregationFun = "max")
fData(is_neg_chr) <- cbind(
fData(is_neg_chr), is_neg[, c("name", "abbreviation", "formula",
"NEG", "RT")])
## Plot the extracted ion chromatograms
plot_chrs(is_neg_chr, dr, prefix = "IS-", suffix = "_NEG")
## Define the rt window for standards that look ~ OK.
is_neg$rtmin <- NA_real_
is_neg$rtmax <- NA_real_
is_neg$rtmin[is_neg$name == "Creatinine (N-Methhyl_D3)"] <- 120
is_neg$rtmax[is_neg$name == "Creatinine (N-Methhyl_D3)"] <- 145
is_neg$rtmin[is_neg$name == "L-Alanine (13C3, 99%; 15N, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Alanine (13C3, 99%; 15N, 99%)"] <- 187
is_neg$rtmin[is_neg$name == "L-Arginine HCl (13C6, 99%; 15N4, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Arginine HCl (13C6, 99%; 15N4, 99%)"] <- 200
is_neg$rtmin[is_neg$name == "L-Aspartic acid (13C4, 99%; 15N, 99%)"] <- 170
is_neg$rtmax[is_neg$name == "L-Aspartic acid (13C4, 99%; 15N, 99%)"] <- 200
is_neg$rtmin[is_neg$name == "L-Cystine (13C6, 99%; 15N2, 99%)"] <- 202
is_neg$rtmax[is_neg$name == "L-Cystine (13C6, 99%; 15N2, 99%)"] <- 230
is_neg$rtmin[is_neg$name == "L-Glutamic acid (13C5, 99%; 15N, 99%)"] <- 165
is_neg$rtmax[is_neg$name == "L-Glutamic acid (13C5, 99%; 15N, 99%)"] <- 200
is_neg$rtmin[is_neg$name == "L-Histidine HCl H2O (13C6; 15N3, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Histidine HCl H2O (13C6; 15N3, 99%)"] <- 205
is_neg$rtmin[is_neg$name == "L-Lysine 2HCl (13C6, 99%; 15N2, 99%)"] <- 175
is_neg$rtmax[is_neg$name == "L-Lysine 2HCl (13C6, 99%; 15N2, 99%)"] <- 205
is_neg$rtmin[is_neg$name == "L-Methionine (13C5, 99%; 15N, 99%)"] <- 155
is_neg$rtmax[is_neg$name == "L-Methionine (13C5, 99%; 15N, 99%)"] <- 170
is_neg$rtmin[is_neg$name == "L-Phenylalanine (13C9, 99%; 15N, 99%)"] <- 140
is_neg$rtmax[is_neg$name == "L-Phenylalanine (13C9, 99%; 15N, 99%)"] <- 161
is_neg$rtmin[is_neg$name == "L-Serine (13C3, 99%; 15N, 99%)"] <- 172
is_neg$rtmax[is_neg$name == "L-Serine (13C3, 99%; 15N, 99%)"] <- 190
is_neg$rtmin[is_neg$name == "L-Threonine (13C4, 99%; 15N, 99%)"] <- 163
is_neg$rtmax[is_neg$name == "L-Threonine (13C4, 99%; 15N, 99%)"] <- 183
is_neg$rtmin[is_neg$name == "L-Tyrosine (13C9, 99%; 15N, 99%)"] <- 160
is_neg$rtmax[is_neg$name == "L-Tyrosine (13C9, 99%; 15N, 99%)"] <- 175
is_neg$rtmin[is_neg$name == "L-Valine (13C5, 99%; 15N, 99%)"] <- 160
is_neg$rtmax[is_neg$name == "L-Valine (13C5, 99%; 15N, 99%)"] <- 175
is_neg <- is_neg[!is.na(is_neg$rtmin), ]
## Re-create the m/z and rt range matrix
is_neg_mz_rt <- chromPeakArea(qc_neg, mz = is_neg$mz_ion, ppm = 10,
rt = is_neg[, c("rtmin", "rtmax")], diffRt = 0)
is_neg_chr <- chromatogram(
qc_neg, mz = is_neg_mz_rt[, c("mzmin", "mzmax")],
rt = is_neg_mz_rt[, c("rtmin", "rtmax")],
aggregationFun = "max", include = "apex_within")
fData(is_neg_chr) <- cbind(
fData(is_neg_chr), is_neg[, c("name", "abbreviation", "formula",
"NEG", "RT")])
## For each IS (row), in each sample (column) keep the chrom peak with the
## highest peak.
is_neg_chr <- filterChromPeaks(is_neg_chr, method = "keepTop",
n = 1L, order = "maxo")
save(is_neg_chr, file = paste0(RDATA_PATH, "is_neg_chr.RData"))
## Plot again.
plot_chrs(is_neg_chr, dr, prefix = "IS-", suffix = "-refined_NEG", rect = FALSE)
```
## Evaluating the *dilution QC samples*
- check how the QC dilution look.
# Per-batch quality assessment