-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalignment_correspondence.Rmd
493 lines (417 loc) · 15.4 KB
/
alignment_correspondence.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
---
title: "CHRIS untargeted metabolomics: alignment and correspondence analysis"
author: "Johannes Rainer"
output:
BiocStyle::html_document:
toc: true
number_sections: false
toc_float: true
bibliography: references.bib
csl: biomed-central.csl
---
```{r biocstyle, echo = FALSE, results = "asis" }
library(BiocStyle)
BiocStyle::markdown()
knitr::opts_chunk$set(message = FALSE, warning = FALSE, dev = c("png", "pdf"))
```
**Modified**: `r file.info("alignment_correspondence.Rmd")$mtime`<br />
**Compiled**: `r date()`
```{r settings, echo = FALSE}
## Set general options
options(useFancyQuotes = FALSE)
set.seed(123)
## Define paths:
FILE_NAME <- "alignment_correspondence"
## Path to save the images; remove all old images.
IMAGE_PATH <- paste0("images/", FILE_NAME, "/")
if (dir.exists(IMAGE_PATH)) unlink(IMAGE_PATH, recursive = TRUE, force = TRUE)
dir.create(IMAGE_PATH, recursive = TRUE, showWarnings = FALSE)
## Path to store RData files
RDATA_PATH <- paste0("data/RData/", FILE_NAME, "/")
dir.create(RDATA_PATH, recursive = TRUE, showWarnings = FALSE)
## Get the number of cpus allocated or fall back to 3
ncores <- as.integer(Sys.getenv("SLURM_JOB_CPUS_PER_NODE", 6))
rt_cut <- 340
MZML_PATH <- "/data/massspec/mzML/"
if (!dir.exists(MZML_PATH))
stop("Can not find the directory with the mzML files: ", MZML_PATH)
```
- Test first all on *just* the QC samples.
- perform alignment
- subset alignment based on QC samples: QC samples get aligned against each
other and then study samples get aligned against QC samples.
- perform correspondence
- plot EICs for standards in:
- x random samples
- 2 QC samples per batch
- peak filling
# Introduction
This document describes the alignment and correspondence analysis of the
HILIC-based untargeted metabolomics data from the CHRIS population study.
In a first pilot analysis alignment and correspondence is performed *only* on
the QC samples of the study.
The chromatographic peak detection was defined in and performed by the
[peak_detection.Rmd](peak_detection.Rmd) file.
Below we load the data and all required libraries.
```{r libs}
library(xcms)
register(bpstart(MulticoreParam(ncores - 1L)))
load("data/RData/peak_detection/data_pos.RData")
dr <- dirname(data_pos)
dirname(data_pos) <- sub("/Volumes/extdata/data/mzML/",
"/data/massspec/mzML/", dr)
data_qc <- filterFile(data_pos, which(data_pos$type == "QC"))
```
# Lab-internal standards
We next load the lab-internal standards. EICs on these will be used to evaluate
the raw data as well as the alignment and correspondence results.
```{r stds}
## Extract known compunds
library("MetaboCoreUtils")
library(Rdisop)
std_info <- read.table(
"https://raw.githubusercontent.com/EuracBiomedicalResearch/lcms-standards/master/data/standards_dilution.txt",
sep = "\t", header = TRUE, as.is = TRUE)
std_info <- std_info[!is.na(std_info[, "POS"]), ]
rownames(std_info) <- 1:nrow(std_info)
std_info$mzneut = NA
std_info$mz_ion = NA
for (i in seq(nrow(std_info))) {
if (grepl("C", std_info$formula[i])) {
std_info$mzneut[i] <- getMolecule(
as.character(std_info$formula[i]))$exactmass
} else {
std_info$mzneut[i] = as.numeric(std_info$formula[i])
}
## Calculate also the m/z
std_info$mz_ion[i] <- mass2mz(
std_info$mzneut[i], adduct = std_info[i, "POS"])[1, 1]
}
std_info <- std_info[!is.na(std_info$mz_ion), ]
std_info <- std_info[order(std_info$name), ]
```
# Alignment
Due to the large shifts in the retention times, alignment (using the default
settings for our LC-MS setup) did not work properly. Thus we try to align the
batches first using a manually selected set of standards and their retention
times in QC samples across batches.
```{r}
std_selected <- c(
"1-Methylhistidine", # and 3-Methylhistidine
"8-Oxo-2-Deoxyguanosine",
"Acetylhistidine",
"Adenine",
"ADMA",
"Alanine",
"Arginine",
"Asparagine",
## "Betaine", # no clear, single peak.
"C5 Carnitine",
"Caffeine",
"cGMP",
"Citrulline",
"Creatine",
"Cystine",
"Dihydroxyacetone phosphate",
"Fructose",
"Glutamine",
"Glyceraldehyde 2-phosphate",
"Glycero-phosphocholine",
"Glycine",
"Histidine",
"Hydroxyproline",
"Hypoxanthine", # take the second peak
"Indoleacetic acid",
"Inosine",
"L-Glutamic Acid",
"Lysine",
"Methionine",
"N-Acetylornithine",
"Ornithine",
"Proline",
"Putrescine",
"SDMA",
"Serine",
"Sphingosine",
"Taurine",
"Threonine"
)
std_rt <- std_info[std_info$name %in% std_selected, ]
```
We next identify chromatographic peaks for each of these standards and plot
EICs.
```{r match-standards}
library(MetaboAnnotation)
param <- MzRtParam(tolerance = 0, ppm = 20, toleranceRt = 50) # rt 40 before
std_peaks <- matchMz(std_rt, chromPeaks(data_qc), param = param,
mzColname = c("mz_ion", "mz"),
rtColname = c("RT", "rt"))
std_peaks <- std_peaks[whichQuery(std_peaks)]
std_rt <- query(std_peaks)
## For each standard, define m/z and rt ranges.
std_rt_mz <- do.call(rbind, lapply(seq_along(std_peaks), function(z) {
tmp <- std_peaks[z]
c(range(tmp$target_rtmin, tmp$target_rtmax),
range(tmp$target_mzmin, tmp$target_mzmax))
}))
colnames(std_rt_mz) <- c("rtmin", "rtmax", "mzmin", "mzmax")
system.time(
std_chr <- chromatogram(data_qc, rt = std_rt_mz[, c("rtmin", "rtmax")],
mz = std_rt_mz[, c("mzmin", "mzmax")])
)
```
```{r raw-eic-plots, echo = FALSE}
#' Plot EICs only for a single batch.
plot_single_sample <- function(x, col = "#00000060", rt = 0) {
par(mfrow = c(ncol(x), 1), mar = c(2, 4, 1, 0.5))
smpl <- basename(x$mzML_file)
for (i in seq_len(ncol(x))) {
tmp <- x[, i]
plot(tmp, main = smpl[i], col = col, peakCol = col,
peakBg = paste0(col, 20))
abline(v = rt, lty = 2)
abline(v = chromPeaks(tmp)[, "rt"], col = col)
grid()
legend("topright", legend = i, cex = 2)
}
}
plot_split_batch <- function(x, col, name = "", rt = 0) {
btches <- unique(x$batch)
par(mfrow = c(length(btches), 1), mar = c(0, 4, 0, 0.5))
for (btch in btches) {
plot(x[, x$batch == btch], col = col[btch], xlab = "", main = "",
yaxt = "n", ylab = "", col.axis = "#00000060",
peakType = "none")
abline(v = rt, lty = 2)
grid()
legend("topright", btch)
}
}
col_batch <- rainbow(length(unique(data_qc$batch)))
names(col_batch) <- unique(data_qc$batch)
col_sample <- col_batch[data_qc$batch]
dr <- paste0(IMAGE_PATH, "standards-alignment-raw/")
dir.create(dr, showWarnings = FALSE)
rt_assign <- data.frame()
for (i in seq_len(nrow(std_rt))) {
## Overview plot
pdf(paste0(dr, std_rt$name[i], "-all-batches.pdf"), width = 8, height = 5)
chr <- std_chr[i, ]
plot(chr, col = paste0(col_sample, 80), peakType = "point",
peakCol = paste0(col_sample[chromPeaks(chr)[, "sample"]], 40))
grid()
abline(v = std_rt$RT[i], lty = 2)
legend("topright", c(std_rt$name[i], paste0("rt = ", std_rt$RT[i])))
dev.off()
## One plot, split by batch
pdf(paste0(dr, std_rt$name[i], "-per-batch.pdf"), width = 8, height = 30)
plot_split_batch(chr, col = col_batch, name = std_rt$name[i],
rt = std_rt$RT[i])
dev.off()
## Individual samples, one plot per batch
dir.create(paste0(dr, std_rt$name[i]), showWarnings = FALSE)
for (batch in names(col_batch)) {
pdf(paste0(dr, std_rt$name[i], "/", batch, ".pdf"), width = 8,
height = 10)
chr_batch <- chr[, chr$batch == batch]
plot_single_sample(chr_batch, col = col_batch[batch],
rt = std_rt$RT[i])
dev.off()
## define data.frame to export
fls <- basename(pData(chr_batch)$mzML_file)
rt_batch <- data.frame(name = std_rt$name[i], batch = batch,
index = seq_along(fls), rt = 0,
mzML_file = fls)
pks <- chromPeaks(chr_batch)
if (nrow(pks)) {
add_tmp <- data.frame(name = std_rt$name[i], batch = batch,
index = pks[, "column"], rt = pks[, "rt"],
mzML_file = fls[pks[, "column"]])
rt_batch <- rbind(rt_batch[!rt_batch$index %in% add_tmp$index, ],
add_tmp)
rt_batch <- rt_batch[order(rt_batch$index), ]
}
rt_assign <- rbind(rt_assign, rt_batch)
}
}
library(writexl)
write_xlsx(as.data.frame(rt_assign), path = "data/_temp_alignment_rt.xlsx")
## Continue with cGMP
## Notes:
## - Alanine, batches 2017-20 and 2017-22: shifts in the same 2 positions.
## - Alanine: batches 2020_10, 2020_11, 2020_14, 2020_15 long tails
## - Arginine: 2020_21 10 sec shift left.
## - Asparagine: 2020_18 -> 10 sec shift left.
## - C5 Carnitine: 2020_19 -> looking at wrong ion? large shift left;
## 2017-91, 92, many overlapping peaks
```
- Notes for peak detection: lower snthresh or minimum required signal. merge
peaks: maybe increase rt range?
Alignment is performed on the pooled QC samples using the default settings for
the employed LC-MS setup.
```{r alignment, echo = TRUE, message = FALSE}
## Grouping the peaks according to group
pdp_subs <- PeakDensityParam(
sampleGroups = data_pos$type, bw = 3,
minFraction = 0.8, binSize = 0.02, maxFeatures = 200)
data_pos <- groupChromPeaks(data_pos, param = pdp_subs)
## Subset alignment options
pgp_subs <- PeakGroupsParam(minFraction = 2/3,
subset = which(data_pos$type == "QC"),
subsetAdjust = "previous", span = 0.5,
extraPeaks = 100)
## Perform the alignment
system.time(
data_pos <- adjustRtime(data_pos, param = pgp_subs)
)
save(data_pos, file = paste0(RDATA_PATH, "data_pos_align.RData"))
```
We next plot the retention times for the selected *hook peaks*.
```{r alignment-hook-peak-rt, fig.path = IMAGE_PATH, fig.cap = "Retention times of hook peaks across the various QC samples.", echo = FALSE}
load(paste0(RDATA_PATH, "data_pos_align.RData"))
data_qc <- filterFile(data_pos, which(data_pos$type == "QC"))
## Define a color for each batch.
col_batch <- rainbow(length(unique(data_qc$batch)))
names(col_batch) <- unique(data_qc$batch)
## Plot the hook peaks
pgm <- peakGroupsMatrix(processParam([email protected][[3]]))
plot(3, 3, pch = NA, xlim = range(pgm, na.rm = TRUE), ylim = c(1, nrow(pgm)),
xlab = "retention time", ylab = "peak number")
for (i in seq_len(nrow(pgm))) {
points(x = pgm[i, ], y = rep(i, ncol(pgm)),
col = paste0(col_batch[data_qc$batch], 10), pch = 16)
}
grid()
```
Hook peaks are mostly present at around 30 seconds as well as after 150 (up to
220) seconds. Retention time shifts become larger with higher retention
times. The mean retention time range is `r format(mean(apply(pgm, MARGIN = 1, function(z) diff(range(z, na.rm = TRUE)))), digits = 3)`.
We next plot the retention time differences for QC samples.
```{r alignment-adjustrtime-plot, fig.path = IMAGE_PATH, fig.cap = "Alignment results", echo = FALSE}
tmp <- data_qc
[email protected] <- list()
plotAdjustedRtime(tmp, col = paste0(col_batch[tmp$batch], 20))
```
Matching identified chromatographic peaks with standards to create EIC plots.
```{r known-cmps, message = FALSE, warning = FALSE}
library(MetaboAnnotation)
param <- MzRtParam(tolerance = 0, ppm = 20, toleranceRt = 40)
std_peaks <- matchMz(std_info, chromPeaks(data_qc), param = param,
mzColname = c("mz_ion", "mz"),
rtColname = c("RT", "rt"))
std_peaks <- std_peaks[whichQuery(std_peaks)]
std_info <- query(std_peaks)
## For each standard, define m/z and rt ranges.
std_rt_mz <- do.call(rbind, lapply(seq_along(std_peaks), function(z) {
tmp <- std_peaks[z]
c(range(tmp$target_rtmin, tmp$target_rtmax),
range(tmp$target_mzmin, tmp$target_mzmax))
}))
colnames(std_rt_mz) <- c("rtmin", "rtmax", "mzmin", "mzmax")
system.time(
std_chr <- chromatogram(data_qc, rt = std_rt_mz[, c("rtmin", "rtmax")],
mz = std_rt_mz[, c("mzmin", "mzmax")],
adjustedRtime = TRUE)
)
system.time(
std_chr_raw <- chromatogram(dropAdjustedRtime(data_qc),
rt = std_rt_mz[, c("rtmin", "rtmax")],
mz = std_rt_mz[, c("mzmin", "mzmax")])
)
## Plot these friends
dr <- paste0(IMAGE_PATH, "standards-alignment-aligned/")
dir.create(dr, showWarnings = FALSE)
history <- processHistory(data_pos)
save(history, file = paste0(dr, "history.RData"))
for (i in seq_len(nrow(std_info))) {
pdf(paste0(dr, std_info$name[i], "-all-batches.pdf"), width = 8, height = 5)
chr <- std_chr[i, ]
plot(chr, col = paste0(col_sample, 80), peakType = "point",
peakCol = paste0(col_sample[chromPeaks(chr)[, "sample"]], 40))
grid()
abline(v = std_info$RT[i], lty = 2)
legend("topright", c(std_info$name[i], paste0("rt = ", std_info$RT[i])))
dev.off()
pdf(paste0(dr, std_info$name[i], "-per-batch.pdf"), width = 8, height = 30)
plot_batch(chr, col = col_batch, name = std_info$name[i],
rt = std_info$RT[i])
dev.off()
}
dr <- paste0(IMAGE_PATH, "standards-alignment-raw/")
dir.create(dr, showWarnings = FALSE)
for (i in seq_len(nrow(std_info))) {
pdf(paste0(dr, std_info$name[i], "-all-batches.pdf"), width = 8, height = 5)
chr <- std_chr_raw[i, ]
plot(chr, col = paste0(col_sample, 80), peakType = "point",
peakCol = paste0(col_sample[chromPeaks(chr)[, "sample"]], 40))
grid()
abline(v = std_info$RT[i], lty = 2)
legend("topright", c(std_info$name[i], paste0("rt = ", std_info$RT[i])))
dev.off()
pdf(paste0(dr, std_info$name[i], "-per-batch.pdf"), width = 8, height = 30)
plot_batch(chr, col = col_batch, name = std_info$name[i],
rt = std_info$RT[i])
dev.off()
}
## Manually selected standards with ~ OK (and unambiguous) data.
std_selected <- c(
"1-Methylhistidine", # and 3-Methylhistidine
"8-Oxo-2-Deoxyguanosine",
"Acetylhistidine",
"Adenine",
"ADMA",
"Alanine",
"Arginine",
"Asparagine",
"Betaine",
"C5 Carnitine",
"Caffeine",
"cGMP",
"Citrulline",
"Creatine",
"Cystine",
"Dihydroxyacetone phosphate",
"Fructose",
"Glutamine",
"Glyceraldehyde 2-phosphate",
"Glycero-phosphocholine",
"Glycine",
"Histidine",
"Hydroxyproline",
"Hypoxanthine", # take the second peak
"Indoleacetic acid",
"Inosine",
"L-Glutamic Acid",
"Lysine",
"Methionine",
"N-Acetylornithine",
"Ornithine",
"Proline",
"Putrescine",
"SDMA",
"Serine",
"Sphingosine",
"Taurine",
"Threonine"
)
```
TODO:
- select standards with the potential to yield ~ OK signal.
- for selected standards, record their rt in QC samples of each batch.
- Need to plot the data separately for each batch, each QC sample to record it.
- Ideally, determine the retention time for matching peaks per sample, export as
xlsx and manually adjust/fix them.
# Correspondence
We next perform the correspondence analysis on the aligned data.
```{r}
pdp <- PeakDensityParam(
sampleGroups = data_pos$type, bw = 2,
minFraction = 0.3, binSize = 0.02, maxFeatures = 200)
data_pos <- groupChromPeaks(data_pos, param = pdp)
```
# Gap filling
# Session information
```{r}
sessionInfo()
```
# References