-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_train_w_iou_val.py
69 lines (53 loc) · 1.88 KB
/
main_train_w_iou_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from mlc.models.utils import load_layout_model
from mlc.config.cfg import read_config, read_omega_cfg
from mlc.data_loaders.mlc_simple_dataloader import MLC_SimpleDataLoader
from torch.utils.tensorboard import SummaryWriter
import logging
from pathlib import Path
import os
import argparse
def get_passed_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--ckpt',
default="mp3d",
help='ckpt pre-trained model. Options zind, mp3d, st3d, panos2d3d. Default mp3d')
parser.add_argument(
'--cuda',
default=0,
help='CUDA device (if any). Default 0')
parser.add_argument(
'--cfg',
default="config/train_mlc.yaml",
help='Config File. Default config/train_mlc.yaml')
parser.add_argument(
'--desc',
default="training_example",
help='Give a description for this training. Default training_test')
parser.add_argument(
'--mlc',
default=None,
help='Define a custom mlc-label directory. By default hn_<ckpt>__mp3d_fpe__mlc is used')
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_passed_args()
# ! Reading configuration
cfg_file = Path(args.cfg).resolve()
assert os.path.exists(cfg_file), f"File does not exits: {cfg_file}"
cfg = read_omega_cfg(cfg_file)
cfg.ckpt = args.ckpt
cfg.cuda_device = args.cuda
cfg.id_exp = f"{cfg.id_exp}__{args.desc}"
if args.mlc is not None:
cfg.mlc_label = args.mlc
logging.info(f"Training model: {cfg.id_exp}")
model = load_layout_model(cfg)
model.prepare_for_training()
model.set_valid_dataloader()
model.valid_iou_loop()
model.save_current_scores()
while model.is_training:
model.train_loop()
model.valid_iou_loop()
model.save_current_scores()