This repository has been archived by the owner on Jul 8, 2023. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathadaptive_zoom.py
228 lines (174 loc) · 9.08 KB
/
adaptive_zoom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
import numpy.linalg
import cv2
import csv
import platform
import math
from calibrate_video import FisheyeCalibrator, StandardCalibrator
from scipy.spatial.transform import Rotation
from scipy.interpolate import interp1d
from gyro_integrator import GyroIntegrator, FrameRotationIntegrator
from matplotlib import pyplot as plt
from _version import __version__
from scipy import signal, interpolate
import time
class AdaptiveZoom:
def __init__(self, fisheyeCalibrator):
self.calibrator = fisheyeCalibrator
self.calib_dimension = fisheyeCalibrator.calib_dimension
self.K = np.copy(fisheyeCalibrator.K)
self.D = np.copy(fisheyeCalibrator.D)
def min_rolling(self, a, window,axis =1):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
rolling = np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
return np.min(rolling,axis=axis)
def findFcorr(self, center, polygon, output_dim):
(output_width, output_height) = output_dim
angle_output = np.arctan2( output_height/2, output_width/2 )
#fig, ax = plt.subplots()
polygon = polygon - center
#ax.scatter(polygon[:,0], polygon[:,1])
distP = numpy.linalg.norm(polygon, axis=1)
angles = np.abs( np.arctan2(polygon[:,1], polygon[:,0]) )
#angles = angles[0:2]
#distP = distP[0:2]
mask = (angle_output <= np.abs(angles)) & (np.abs(angles) < (np.pi - angle_output))
#ax.plot(distP*np.cos(angles), distP*np.sin(angles), 'ro')
#ax.plot(distP[mask]*np.cos(angles[mask]), distP[mask]*np.sin(angles[mask]), 'yo')
#ax.add_patch(matplotlib.patches.Rectangle((-output_width/2,-output_height/2), output_width, output_height,color="yellow"))
dWidth = np.abs( (output_width/2)/np.cos(angles) )
dHeight = np.abs( (output_height/2)/np.sin(angles) )
ffactor = dWidth/distP
ffactor[mask] = dHeight[mask]/distP[mask]
fcorr = np.max( ffactor )
idx = np.argmax( ffactor )
return fcorr, idx
def findFov(self, center, polygon, output_dim, numIntPoints=20):
#(original_width, original_height) = self.calib_dimension
fcorr, idx = self.findFcorr(center, polygon, output_dim)
nP = (polygon.shape)[0]
relevantP = polygon[ ((idx-1)%nP,idx,(idx+1)%nP),:]
distance = np.cumsum( np.sqrt(np.sum( np.diff(relevantP, axis=0)**2, axis=1 )) )
distance = np.insert(distance, 0, 0)/distance[-1]
#interpolations_methods = ['slinear', 'quadratic', 'cubic']
alpha = np.linspace(0, 1, numIntPoints)
interpolator = interp1d(distance, relevantP, kind='quadratic', axis=0)
interpolated_points = interpolator(alpha)
fcorrI, _ = self.findFcorr(center, interpolated_points, output_dim)
fcorr = np.max((fcorr, fcorrI))
#plt.plot(polygon[:,0], polygon[:,1], 'ro')
#plt.plot(relevantP[:,0], relevantP[:,1], 'bo')
#plt.plot(interpolated_points[:,0], interpolated_points[:,1], 'yo')
#plt.show()
return 1/fcorr #np.min([xminDist/output_width, yminDist/output_height])
def compute(self, quaternions, output_dim, fps, smoothingFocus=2.0, tstart = False, tend = False, debug_plots=False, plot_blocking = False):
# if smoothingFocus == -1: Totally disable
# if smoothingFocus == -2: Find minimum sufficient crop
#print(locals())
#smoothingNumFrames = int(smoothingCenter * fps)
#if smoothingNumFrames % 2 == 0:
# smoothingNumFrames = smoothingNumFrames+1
smoothingFocusFrames = int(smoothingFocus * fps)
if smoothingFocusFrames % 2 == 0:
smoothingFocusFrames = smoothingFocusFrames+1
boundaryPolygons = [self.boundingPolygon(quat=q) for q in quaternions]
#focusWindows = [self.findFocalCenter(box, output_dim=output_dim) for box in boundaryBoxes]
#focusWindows = np.array(focusWindows)
# TODO: implement smoothing of position of crop, s.t. cropping area can "move" anywhere within bounding polygon
cropCenterPositions = np.array([(self.calib_dimension[0]/2,self.calib_dimension[1]/2) for q in quaternions])
#if smoothingCenter > 0:
# focusWindowsPad = np.pad(focusWindows, ( (int(smoothingNumFrames/2), int(smoothingNumFrames/2)), (0,0) ), mode='edge')
# filterCoeff = signal.gaussian(smoothingNumFrames,smoothingNumFrames/6)
# filterCoeff = filterCoeff / np.sum(filterCoeff)
# smoothXpos = np.convolve(focusWindowsPad[:,0], filterCoeff, 'valid')
# smoothYpos = np.convolve(focusWindowsPad[:,1], filterCoeff, 'valid')
# plt.plot(focusWindows)
# plt.plot(smoothXpos)
# plt.plot(smoothYpos)
# plt.show()
# focusWindows = np.stack((smoothXpos, smoothYpos), axis=-1)
fovValues = [self.findFov(center,polygon,output_dim) for center, polygon in zip(cropCenterPositions,boundaryPolygons)]
fovValues = np.array(fovValues)
if tend != False:
# Only within render range.
max_fov = np.max(fovValues)
fovValues[:max(tstart,0)] = max_fov
fovValues[tend:] = max_fov
if smoothingFocus > 0:
filterCoeffFocus = signal.gaussian(smoothingFocusFrames,smoothingFocusFrames/6)
filterCoeffFocus = filterCoeffFocus / np.sum(filterCoeffFocus)
fovValuesPad = np.pad(fovValues, ( (int(smoothingFocusFrames/2), int(smoothingFocusFrames/2)) ), mode='edge')
fovMin = self.min_rolling(fovValuesPad, window=smoothingFocusFrames)
fovSmooth = np.convolve(np.pad(fovMin, ( (int(smoothingFocusFrames/2), int(smoothingFocusFrames/2)) ), mode='edge'),
filterCoeffFocus, 'valid')
if debug_plots:
plt.plot(fovValues)
plt.plot(fovMin)
plt.plot(fovSmooth)
plt.show(block=plot_blocking)
fovValues = fovSmooth
elif smoothingFocus == -1: #disabled
maxF = np.min(fovValues)
fovValues = np.repeat(maxF, fovValues.size )
elif smoothingFocus == -2: # apply nothing
fovValues = np.repeat(1, fovValues.size )
return fovValues, cropCenterPositions
def findFocalCenter(self, box, output_dim):
(mleft,mright,mtop,mbottom) = box
(output_width, output_height) = output_dim
(calib_width, calib_height) = self.calib_dimension
(window_width, window_height) = output_dim
maxX = mright-mleft
maxY = mbottom-mtop
ratio = maxX/maxY
output_ratio = float(output_width)/float(output_height)
fX = 0
fY = 0
if maxX/output_ratio < maxY:
window_width = maxX
window_height = maxX/output_ratio
fX = mleft + window_width/2
fY = calib_height/2
if fY+window_height/2 > mbottom:
fY = mbottom - window_height/2
elif fY-window_height/2 < mtop:
fY = mtop + window_height/2
else:
window_height = maxY
window_width = maxY*output_ratio
fY = mtop + window_height/2
fX = calib_width/2
if fX+window_width/2 > mright:
fX = mright - window_width/2
elif fX-window_width/2 < mleft:
fX = mleft + window_width/2
return (fX,fY) #, window_width, window_height)
def boundingPolygon(self, quat, numPoints = 9):
(original_width, original_height) = self.calib_dimension
R = np.eye(3)
if type(quat) != type(None):
quat = quat.flatten()
#R = Rotation([-quat[1],-quat[2],quat[3],-quat[0]]).as_matrix()
R = Rotation([quat[1],quat[2],quat[3],quat[0]]).as_matrix()
R[[0,0,1,2],[1,2,0,0]] *=-1
distorted_points = []
for i in range(numPoints-1):
distorted_points.append( (i*(original_width/(numPoints-1)), 0) )
for i in range(numPoints-1):
distorted_points.append( (original_width, i*(original_height/(numPoints-1)) ) )
for i in range(numPoints-1):
p = numPoints-1 - i
distorted_points.append( (p*(original_width/(numPoints-1)), original_height) )
for i in range(numPoints-1):
p = numPoints-1 - i
distorted_points.append( (0, p*(original_height/(numPoints-1)) ) )
distorted_points = np.array(distorted_points, np.float64)
distorted_points = np.expand_dims(distorted_points, axis=0) #add extra dimension so opencv accepts points
undistorted_points = cv2.fisheye.undistortPoints(distorted_points, self.K, self.D, R=R, P=self.K)
undistorted_points = undistorted_points[0,:,:] #remove extra dimension
#mtop = np.max(undistorted_points[:(numPoints-1),1])
#mbottom = np.min(undistorted_points[numPoints:(2*numPoints-1),1])
#mleft = np.max(undistorted_points[(2*numPoints):(3*numPoints-1),0])
#mright = np.min(undistorted_points[(3*numPoints):,0])
return undistorted_points