forked from edrosten/TooN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsl.h
225 lines (194 loc) · 8.01 KB
/
sl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// -*- c++ -*-
// Copyright (C) 2005,2009 Tom Drummond ([email protected]),
// Gerhard Reitmayr ([email protected])
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
//AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
//LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
#ifndef TOON_INCLUDE_SL_H
#define TOON_INCLUDE_SL_H
#include <TooN/TooN.h>
#include <TooN/helpers.h>
#include <TooN/gaussian_elimination.h>
#include <TooN/determinant.h>
#include <cassert>
namespace TooN {
template <int N, typename P> class SL;
template <int N, typename P> std::istream & operator>>(std::istream &, SL<N, P> &);
/// represents an element from the group SL(n), the NxN matrices M with det(M) = 1.
/// This can be used to conveniently estimate homographies on n-1 dimentional spaces.
/// The implementation uses the matrix exponential function @ref exp for
/// exponentiation from an element in the Lie algebra and LU to compute an inverse.
///
/// The Lie algebra are the NxN matrices M with trace(M) = 0. The N*N-1 generators used
/// to represent this vector space are the following:
/// - diag(...,1,-1,...), n-1 along the diagonal
/// - symmetric generators for every pair of off-diagonal elements
/// - anti-symmetric generators for every pair of off-diagonal elements
/// This choice represents the fact that SL(n) can be interpreted as the product
/// of all symmetric matrices with det() = 1 times SO(n).
/// @ingroup gTransforms
template <int N, typename Precision = DefaultPrecision>
class SL {
friend std::istream & operator>> <N,Precision>(std::istream &, SL &);
public:
static const int size = N; ///< size of the matrices represented by SL<N>
static const int dim = N*N - 1; ///< dimension of the vector space represented by SL<N>
/// default constructor, creates identity element
SL() : my_matrix(Identity) {}
/// exp constructor, creates element through exponentiation of Lie algebra vector. see @ref SL::exp.
template <int S, typename P, typename B>
SL( const Vector<S,P,B> & v ) { *this = exp(v); }
/// copy constructor from a matrix, coerces matrix to be of determinant = 1
template <int R, int C, typename P, typename A>
SL(const Matrix<R,C,P,A>& M) : my_matrix(M) { coerce(); }
/// returns the represented matrix
const Matrix<N,N,Precision> & get_matrix() const { return my_matrix; }
/// returns the inverse using LU
SL inverse() const { return SL(*this, Invert()); }
/// multiplies to SLs together by multiplying the underlying matrices
template <typename P>
SL<N,typename Internal::MultiplyType<Precision, P>::type> operator*( const SL<N,P> & rhs) const { return SL<N,typename Internal::MultiplyType<Precision, P>::type>(*this, rhs); }
/// right multiplies this SL with another one
template <typename P>
SL operator*=( const SL<N,P> & rhs) { *this = *this*rhs; return *this; }
/// exponentiates a vector in the Lie algebra to compute the corresponding element
/// @arg v a vector of dimension SL::dim
template <int S, typename P, typename B>
static inline SL exp( const Vector<S,P,B> &);
inline Vector<N*N-1, Precision> ln() const ;
/// returns one generator of the group. see SL for a detailed description of
/// the generators used.
/// @arg i number of the generator between 0 and SL::dim -1 inclusive
static inline Matrix<N,N,Precision> generator(int);
private:
struct Invert {};
SL( const SL & from, struct Invert ) {
const Matrix<N> id = Identity;
my_matrix = gaussian_elimination(from.my_matrix, id);
}
SL( const SL & a, const SL & b) : my_matrix(a.get_matrix() * b.get_matrix()) {}
void coerce(){
using std::abs;
Precision det = determinant(my_matrix);
assert(abs(det) > 0);
using std::pow;
my_matrix /= pow(det, 1.0/N);
}
/// these constants indicate which parts of the parameter vector
/// map to which generators
///{
static const int COUNT_DIAG = N - 1;
static const int COUNT_SYMM = (dim - COUNT_DIAG)/2;
static const int COUNT_ASYMM = COUNT_SYMM;
static const int DIAG_LIMIT = COUNT_DIAG;
static const int SYMM_LIMIT = COUNT_SYMM + DIAG_LIMIT;
///}
Matrix<N,N,Precision> my_matrix;
};
template <int N, typename Precision>
template <int S, typename P, typename B>
inline SL<N, Precision> SL<N, Precision>::exp( const Vector<S,P,B> & v){
SizeMismatch<S,dim>::test(v.size(), dim);
Matrix<N,N,Precision> t(Zeros);
for(int i = 0; i < dim; ++i)
t += generator(i) * v[i];
SL<N, Precision> result;
result.my_matrix = TooN::exp(t);
return result;
}
template <int N, typename Precision>
inline Vector<N*N-1, Precision> SL<N, Precision>::ln() const {
const Matrix<N> l = TooN::log(my_matrix);
Vector<SL<N,Precision>::dim, Precision> v;
Precision last = 0;
for(int i = 0; i < DIAG_LIMIT; ++i){ // diagonal elements
v[i] = l(i,i) + last;
last = l(i,i);
}
for(int i = DIAG_LIMIT, row = 0, col = 1; i < SYMM_LIMIT; ++i) { // calculate symmetric and antisymmetric in one go
// do the right thing here to calculate the correct indices !
v[i] = (l(row, col) + l(col, row))*0.5;
v[i+COUNT_SYMM] = (-l(row, col) + l(col, row))*0.5;
++col;
if( col == N ){
++row;
col = row+1;
}
}
return v;
}
template <int N, typename Precision>
inline Matrix<N,N,Precision> SL<N, Precision>::generator(int i){
assert( i > -1 && i < dim );
Matrix<N,N,Precision> result(Zeros);
if(i < DIAG_LIMIT) { // first ones are the diagonal ones
result(i,i) = 1;
result(i+1,i+1) = -1;
} else if(i < SYMM_LIMIT){ // then the symmetric ones
int row = 0, col = i - DIAG_LIMIT + 1;
while(col > (N - row - 1)){
col -= (N - row - 1);
++row;
}
col += row;
result(row, col) = result(col, row) = 1;
} else { // finally the antisymmetric ones
int row = 0, col = i - SYMM_LIMIT + 1;
while(col > N - row - 1){
col -= N - row - 1;
++row;
}
col += row;
result(row, col) = -1;
result(col, row) = 1;
}
return result;
}
template <int S, typename PV, typename B, int N, typename P>
Vector<N, typename Internal::MultiplyType<P, PV>::type> operator*( const SL<N, P> & lhs, const Vector<S,PV,B> & rhs ){
return lhs.get_matrix() * rhs;
}
template <int S, typename PV, typename B, int N, typename P>
Vector<N, typename Internal::MultiplyType<PV, P>::type> operator*( const Vector<S,PV,B> & lhs, const SL<N,P> & rhs ){
return lhs * rhs.get_matrix();
}
template<int R, int C, typename PM, typename A, int N, typename P> inline
Matrix<N, C, typename Internal::MultiplyType<P, PM>::type> operator*(const SL<N,P>& lhs, const Matrix<R, C, PM, A>& rhs){
return lhs.get_matrix() * rhs;
}
template<int R, int C, typename PM, typename A, int N, typename P> inline
Matrix<R, N, typename Internal::MultiplyType<PM, P>::type> operator*(const Matrix<R, C, PM, A>& lhs, const SL<N,P>& rhs){
return lhs * rhs.get_matrix();
}
template <int N, typename P>
std::ostream & operator<<(std::ostream & out, const SL<N, P> & h){
out << h.get_matrix();
return out;
}
template <int N, typename P>
std::istream & operator>>(std::istream & in, SL<N, P> & h){
in >> h.my_matrix;
h.coerce();
return in;
}
};
#endif