forked from edrosten/TooN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim3.h
506 lines (424 loc) · 18 KB
/
sim3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// -*- c++ -*-
// Copyright (C) 2011 Tom Drummond ([email protected])
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
//AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
//LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
#ifndef TOON_INCLUDE_SIM3_H
#define TOON_INCLUDE_SIM3_H
#include <TooN/se3.h>
namespace TooN {
/// Represent a three-dimensional similarity transformation (a rotation, a scale factor and a translation).
/// This can be represented by a \f$3\times\f$4 matrix operating on a homogeneous co-ordinate,
/// so that a vector \f$\underline{x}\f$ is transformed to a new location \f$\underline{x}'\f$
/// by
/// \f[\begin{aligned}\underline{x}' &= E\times\underline{x}\\ \begin{bmatrix}x'\\y'\\z'\end{bmatrix} &= \begin{pmatrix}s r_{11} & s r_{12} & s r_{13} & t_1\\s r_{21} & s r_{22} & s r_{23} & t_2\\s r_{31} & s r_{32} & s r_{33} & t_3\end{pmatrix}\begin{bmatrix}x\\y\\z\\1\end{bmatrix}\end{aligned}\f]
///
/// This transformation is a member of the Lie group SIM3. These can be parameterised with
/// seven numbers (in the space of the Lie Algebra). In this class, the first three parameters are a
/// translation vector while the second three are a rotation vector, whose direction is the axis of rotation
/// and length the amount of rotation (in radians), as for SO3. The seventh parameter is the log of the scale of the transformation.
/// @ingroup gTransforms
template <typename Precision = DefaultPrecision>
class SIM3 {
public:
/// Default constructor. Initialises the the rotation to zero (the identity), the scale to one and the translation to zero
inline SIM3() : my_scale(1) {}
template <int S, typename P, typename A>
SIM3(const SO3<Precision> & R, const Vector<S, P, A>& T, const Precision & s) : my_se3(R,T), my_scale(s) {}
template <int S, typename P, typename A>
SIM3(const Vector<S, P, A> & v) { *this = exp(v); }
/// Returns the rotation part of the transformation as a SO3
inline SO3<Precision>& get_rotation(){return my_se3.get_rotation();}
/// @overload
inline const SO3<Precision>& get_rotation() const {return my_se3.get_rotation();}
/// Returns the translation part of the transformation as a Vector
inline Vector<3, Precision>& get_translation() {return my_se3.get_translation();}
/// @overload
inline const Vector<3, Precision>& get_translation() const {return my_se3.get_translation();}
/// Returns the scale factor
inline Precision & get_scale() { return my_scale; }
/// @overload
inline const Precision & get_scale() const { return my_scale; }
/// Exponentiate a Vector in the Lie Algebra to generate a new SIM3.
/// See the Detailed Description for details of this vector.
/// @param vect The Vector to exponentiate
template <int S, typename P, typename A>
static inline SIM3 exp(const Vector<S, P, A>& vect);
/// Take the logarithm of the matrix, generating the corresponding vector in the Lie Algebra.
/// See the Detailed Description for details of this vector.
static inline Vector<7, Precision> ln(const SIM3& se3);
/// @overload
inline Vector<7, Precision> ln() const { return SIM3::ln(*this); }
inline SIM3 inverse() const {
const SO3<Precision> rinv = get_rotation().inverse();
const Precision inv_scale = 1/my_scale;
return SIM3(rinv, -(inv_scale*(rinv*get_translation())), inv_scale);
}
/// Right-multiply by another SIM3 (concatenate the two transformations)
/// @param rhs The multipier
inline SIM3& operator *=(const SIM3& rhs) {
get_translation() += get_rotation() * (get_scale() * rhs.get_translation());
get_rotation() *= rhs.get_rotation();
get_scale() *= rhs.get_scale();
return *this;
}
/// Right-multiply by another SIM3 (concatenate the two transformations)
/// @param rhs The multipier
template<typename P>
inline SIM3<typename Internal::MultiplyType<Precision, P>::type> operator *(const SIM3<P>& rhs) const {
return SIM3<typename Internal::MultiplyType<Precision, P>::type>(get_rotation()*rhs.get_rotation(), get_translation() + get_rotation()*(get_scale()*rhs.get_translation()), get_scale()*rhs.get_scale());
}
inline SIM3& left_multiply_by(const SIM3& left) {
get_translation() = left.get_translation() + left.get_rotation() * (left.get_scale() * get_translation());
get_rotation() = left.get_rotation() * get_rotation();
get_scale() = left.get_scale() * get_scale();
return *this;
}
static inline Matrix<4,4,Precision> generator(int i){
Matrix<4,4,Precision> result(Zeros);
if(i < 3){
result(i,3)=1;
return result;
}
if(i < 6){
result[(i+1)%3][(i+2)%3] = -1;
result[(i+2)%3][(i+1)%3] = 1;
return result;
}
result(0,0) = 1;
result(1,1) = 1;
result(2,2) = 1;
return result;
}
/// Returns the i-th generator times pos
template<typename Base>
inline static Vector<4,Precision> generator_field(int i, const Vector<4, Precision, Base>& pos)
{
Vector<4, Precision> result(Zeros);
if(i < 3){
result[i]=pos[3];
return result;
}
if(i < 6){
result[(i+1)%3] = - pos[(i+2)%3];
result[(i+2)%3] = pos[(i+1)%3];
return result;
}
result.template slice<0,3>() = pos.template slice<0,3>();
return result;
}
/// Transfer a matrix in the Lie Algebra from one
/// co-ordinate frame to another. This is the operation such that for a matrix
/// \f$ B \f$,
/// \f$ e^{\text{Adj}(v)} = Be^{v}B^{-1} \f$
/// @param M The Matrix to transfer
template<int S, typename P2, typename Accessor>
inline Vector<7, Precision> adjoint(const Vector<S,P2, Accessor>& vect)const;
/// Transfer covectors between frames (using the transpose of the inverse of the adjoint)
/// so that trinvadjoint(vect1) * adjoint(vect2) = vect1 * vect2
template<int S, typename P2, typename Accessor>
inline Vector<7, Precision> trinvadjoint(const Vector<S,P2,Accessor>& vect)const;
///@overload
template <int R, int C, typename P2, typename Accessor>
inline Matrix<7,7,Precision> adjoint(const Matrix<R,C,P2,Accessor>& M)const;
///@overload
template <int R, int C, typename P2, typename Accessor>
inline Matrix<7,7,Precision> trinvadjoint(const Matrix<R,C,P2,Accessor>& M)const;
private:
SE3<Precision> my_se3;
Precision my_scale;
};
// transfers a vector in the Lie algebra
// from one coord frame to another
// so that exp(adjoint(vect)) = (*this) * exp(vect) * (this->inverse())
template<typename Precision>
template<int S, typename P2, typename Accessor>
inline Vector<7, Precision> SIM3<Precision>::adjoint(const Vector<S,P2, Accessor>& vect) const{
SizeMismatch<7,S>::test(7, vect.size());
Vector<7, Precision> result;
result.template slice<3,3>() = get_rotation() * vect.template slice<3,3>();
result.template slice<0,3>() = get_rotation() * vect.template slice<0,3>();
result.template slice<0,3>() += get_translation() ^ result.template slice<3,3>();
return result;
}
// tansfers covectors between frames
// (using the transpose of the inverse of the adjoint)
// so that trinvadjoint(vect1) * adjoint(vect2) = vect1 * vect2
template<typename Precision>
template<int S, typename P2, typename Accessor>
inline Vector<7, Precision> SIM3<Precision>::trinvadjoint(const Vector<S,P2, Accessor>& vect) const{
SizeMismatch<7,S>::test(7, vect.size());
Vector<7, Precision> result;
result.template slice<3,3>() = get_rotation() * vect.template slice<3,3>();
result.template slice<0,3>() = get_rotation() * vect.template slice<0,3>();
result.template slice<3,3>() += get_translation() ^ result.template slice<0,3>();
return result;
}
template<typename Precision>
template<int R, int C, typename P2, typename Accessor>
inline Matrix<7,7,Precision> SIM3<Precision>::adjoint(const Matrix<R,C,P2,Accessor>& M)const{
SizeMismatch<7,R>::test(7, M.num_cols());
SizeMismatch<7,C>::test(7, M.num_rows());
Matrix<7,7,Precision> result;
for(int i=0; i<7; i++){
result.T()[i] = adjoint(M.T()[i]);
}
for(int i=0; i<7; i++){
result[i] = adjoint(result[i]);
}
return result;
}
template<typename Precision>
template<int R, int C, typename P2, typename Accessor>
inline Matrix<7,7,Precision> SIM3<Precision>::trinvadjoint(const Matrix<R,C,P2,Accessor>& M)const{
SizeMismatch<7,R>::test(7, M.num_cols());
SizeMismatch<7,C>::test(7, M.num_rows());
Matrix<7,7,Precision> result;
for(int i=0; i<7; i++){
result.T()[i] = trinvadjoint(M.T()[i]);
}
for(int i=0; i<7; i++){
result[i] = trinvadjoint(result[i]);
}
return result;
}
/// Write an SIM3 to a stream
/// @relates SIM3
template <typename Precision>
inline std::ostream& operator <<(std::ostream& os, const SIM3<Precision>& rhs){
std::streamsize fw = os.width();
for(int i=0; i<3; i++){
os.width(fw);
os << rhs.get_rotation().get_matrix()[i] * rhs.get_scale();
os.width(fw);
os << rhs.get_translation()[i] << '\n';
}
return os;
}
/// Reads an SIM3 from a stream
/// @relates SIM3
template <typename Precision>
inline std::istream& operator>>(std::istream& is, SIM3<Precision>& rhs){
for(int i=0; i<3; i++){
is >> rhs.get_rotation().my_matrix[i].ref() >> rhs.get_translation()[i];
}
rhs.get_scale() = (norm(rhs.get_rotation().my_matrix[0]) + norm(rhs.get_rotation().my_matrix[1]) + norm(rhs.get_rotation().my_matrix[2]))/3;
rhs.get_rotation().coerce();
return is;
}
//////////////////
// operator * //
// SIM3 * Vector //
//////////////////
namespace Internal {
template<int S, typename PV, typename A, typename P>
struct SIM3VMult;
}
template<int S, typename PV, typename A, typename P>
struct Operator<Internal::SIM3VMult<S,PV,A,P> > {
const SIM3<P> & lhs;
const Vector<S,PV,A> & rhs;
Operator(const SIM3<P> & l, const Vector<S,PV,A> & r ) : lhs(l), rhs(r) {}
template <int S0, typename P0, typename A0>
void eval(Vector<S0, P0, A0> & res ) const {
SizeMismatch<4,S>::test(4, rhs.size());
res.template slice<0,3>()=lhs.get_rotation() * (lhs.get_scale() * rhs.template slice<0,3>());
res.template slice<0,3>()+=TooN::operator*(lhs.get_translation(),rhs[3]);
res[3] = rhs[3];
}
int size() const { return 4; }
};
/// Right-multiply by a Vector
/// @relates SIM3
template<int S, typename PV, typename A, typename P> inline
Vector<4, typename Internal::MultiplyType<P,PV>::type> operator*(const SIM3<P> & lhs, const Vector<S,PV,A>& rhs){
return Vector<4, typename Internal::MultiplyType<P,PV>::type>(Operator<Internal::SIM3VMult<S,PV,A,P> >(lhs,rhs));
}
/// Right-multiply by a Vector
/// @relates SIM3
template <typename PV, typename A, typename P> inline
Vector<3, typename Internal::MultiplyType<P,PV>::type> operator*(const SIM3<P>& lhs, const Vector<3,PV,A>& rhs){
return lhs.get_translation() + lhs.get_rotation() * (lhs.get_scale() * rhs);
}
//////////////////
// operator * //
// Vector * SIM3 //
//////////////////
namespace Internal {
template<int S, typename PV, typename A, typename P>
struct VSIM3Mult;
}
template<int S, typename PV, typename A, typename P>
struct Operator<Internal::VSIM3Mult<S,PV,A,P> > {
const Vector<S,PV,A> & lhs;
const SIM3<P> & rhs;
Operator( const Vector<S,PV,A> & l, const SIM3<P> & r ) : lhs(l), rhs(r) {}
template <int S0, typename P0, typename A0>
void eval(Vector<S0, P0, A0> & res ) const {
SizeMismatch<4,S>::test(4, lhs.size());
res.template slice<0,3>()= rhs.get_scale() * lhs.template slice<0,3>() * rhs.get_rotation();
res[3] = lhs[3];
res[3] += lhs.template slice<0,3>() * rhs.get_translation();
}
int size() const { return 4; }
};
/// Left-multiply by a Vector
/// @relates SIM3
template<int S, typename PV, typename A, typename P> inline
Vector<4, typename Internal::MultiplyType<P,PV>::type> operator*( const Vector<S,PV,A>& lhs, const SIM3<P> & rhs){
return Vector<4, typename Internal::MultiplyType<P,PV>::type>(Operator<Internal::VSIM3Mult<S,PV,A,P> >(lhs,rhs));
}
//////////////////
// operator * //
// SIM3 * Matrix //
//////////////////
namespace Internal {
template <int R, int C, typename PM, typename A, typename P>
struct SIM3MMult;
}
template<int R, int Cols, typename PM, typename A, typename P>
struct Operator<Internal::SIM3MMult<R, Cols, PM, A, P> > {
const SIM3<P> & lhs;
const Matrix<R,Cols,PM,A> & rhs;
Operator(const SIM3<P> & l, const Matrix<R,Cols,PM,A> & r ) : lhs(l), rhs(r) {}
template <int R0, int C0, typename P0, typename A0>
void eval(Matrix<R0, C0, P0, A0> & res ) const {
SizeMismatch<4,R>::test(4, rhs.num_rows());
for(int i=0; i<rhs.num_cols(); ++i)
res.T()[i] = lhs * rhs.T()[i];
}
int num_cols() const { return rhs.num_cols(); }
int num_rows() const { return 4; }
};
/// Right-multiply by a Matrix
/// @relates SIM3
template <int R, int Cols, typename PM, typename A, typename P> inline
Matrix<4,Cols, typename Internal::MultiplyType<P,PM>::type> operator*(const SIM3<P> & lhs, const Matrix<R,Cols,PM, A>& rhs){
return Matrix<4,Cols,typename Internal::MultiplyType<P,PM>::type>(Operator<Internal::SIM3MMult<R, Cols, PM, A, P> >(lhs,rhs));
}
//////////////////
// operator * //
// Matrix * SIM3 //
//////////////////
namespace Internal {
template <int Rows, int C, typename PM, typename A, typename P>
struct MSIM3Mult;
}
template<int Rows, int C, typename PM, typename A, typename P>
struct Operator<Internal::MSIM3Mult<Rows, C, PM, A, P> > {
const Matrix<Rows,C,PM,A> & lhs;
const SIM3<P> & rhs;
Operator( const Matrix<Rows,C,PM,A> & l, const SIM3<P> & r ) : lhs(l), rhs(r) {}
template <int R0, int C0, typename P0, typename A0>
void eval(Matrix<R0, C0, P0, A0> & res ) const {
SizeMismatch<4, C>::test(4, lhs.num_cols());
for(int i=0; i<lhs.num_rows(); ++i)
res[i] = lhs[i] * rhs;
}
int num_cols() const { return 4; }
int num_rows() const { return lhs.num_rows(); }
};
/// Left-multiply by a Matrix
/// @relates SIM3
template <int Rows, int C, typename PM, typename A, typename P> inline
Matrix<Rows,4, typename Internal::MultiplyType<PM,P>::type> operator*(const Matrix<Rows,C,PM, A>& lhs, const SIM3<P> & rhs ){
return Matrix<Rows,4,typename Internal::MultiplyType<PM,P>::type>(Operator<Internal::MSIM3Mult<Rows, C, PM, A, P> >(lhs,rhs));
}
namespace Internal {
/// internal function that calculates the coefficients for the Rodrigues formula for SIM3 translation
template <typename Precision>
inline Vector<3, Precision> compute_rodrigues_coefficients_sim3( const Precision & s, const Precision & t ){
using std::exp;
Vector<3, Precision> coeff;
const Precision es = exp(s);
// 4 cases for s -> 0 and/or theta -> 0
// the Taylor expansions were calculated with Maple 12 and truncated at the 3rd power,
// such that eps^3 < 1e-18 which results in approximately 1 + eps^3 = 1
static const Precision eps = 1e-6;
if(fabs(s) < eps && fabs(t) < eps){
coeff[0] = 1 + s/2 + s*s/6;
coeff[1] = 1/2 + s/3 - t*t/24 + s*s/8;
coeff[2] = 1/6 + s/8 - t*t/120 + s*s/20;
} else if(fabs(s) < eps) {
coeff[0] = 1 + s/2 + s*s/6;
coeff[1] = (1-cos(t))/(t*t) + (sin(t)-cos(t)*t)*s/(t*t*t)+(2*sin(t)*t-t*t*cos(t)-2+2*cos(t))*s*s/(2*t*t*t*t);
coeff[2] = (t-sin(t))/(t*t*t) - (-t*t-2+2*cos(t)+2*sin(t)*t)*s/(2*t*t*t*t) - (-t*t*t+6*cos(t)*t+3*sin(t)*t*t-6*sin(t))*s*s/(6*t*t*t*t*t);
} else if(fabs(t) < eps) {
coeff[0] = (es - 1)/s;
coeff[1] = (s*es+1-es)/(s*s) - (6*s*es+6-6*es+es*s*s*s-3*es*s*s)*t*t/(6*s*s*s*s);
coeff[2] = (es*s*s-2*s*es+2*es-2)/(2*s*s*s) - (es*s*s*s*s-4*es*s*s*s+12*es*s*s-24*s*es+24*es-24)*t*t/(24*s*s*s*s*s);
} else {
const Precision a = es * sin(t);
const Precision b = es * cos(t);
const Precision inv_s_theta = 1/(s*s + t*t);
coeff[0] = (es - 1)/s;
coeff[1] = (a*s + (1-b)*t) * inv_s_theta / t;
coeff[2] = (coeff[0] - ((b-1)*s + a*t) * inv_s_theta) / (t*t);
}
return coeff;
}
}
template <typename Precision>
template <int S, typename P, typename VA>
inline SIM3<Precision> SIM3<Precision>::exp(const Vector<S, P, VA>& mu){
SizeMismatch<7,S>::test(7, mu.size());
using std::exp;
SIM3<Precision> result;
// scale
result.get_scale() = exp(mu[6]);
// rotation
const Vector<3,Precision> w = mu.template slice<3,3>();
const Precision t = norm(w);
result.get_rotation() = SO3<>::exp(w);
// translation
const Vector<3, Precision> coeff = Internal::compute_rodrigues_coefficients_sim3(mu[6],t);
const Vector<3,Precision> cross = w ^ mu.template slice<0,3>();
result.get_translation() = coeff[0] * mu.template slice<0,3>() + TooN::operator*(coeff[1], cross) + TooN::operator*(coeff[2], (w ^ cross));
return result;
}
template <typename Precision>
inline Vector<7, Precision> SIM3<Precision>::ln(const SIM3<Precision>& sim3) {
using std::sqrt;
using std::log;
Vector<7, Precision> result;
// rotation
result.template slice<3,3>() = sim3.get_rotation().ln();
const Precision theta = norm(result.template slice<3,3>());
// scale
const Precision es = sim3.get_scale();
const Precision s = log(sim3.get_scale());
result[6] = s;
// Translation
const Vector<3, Precision> coeff = Internal::compute_rodrigues_coefficients_sim3(s, theta);
const Matrix<3,3, Precision> cross = cross_product_matrix(result.template slice<3,3>());
const Matrix<3,3, Precision> W = Identity * coeff[0] + cross * coeff[1] + cross * cross * coeff[2];
result.template slice<0,3>() = gaussian_elimination(W, sim3.get_translation());
return result;
}
#if 0
template <typename Precision>
inline SE3<Precision> operator*(const SO3<Precision>& lhs, const SE3<Precision>& rhs){
return SE3<Precision>(lhs*rhs.get_rotation(),lhs*rhs.get_translation());
}
#endif
}
#endif