forked from edrosten/TooN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim2.h
385 lines (323 loc) · 13.5 KB
/
sim2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// -*- c++ -*-
// Copyright (C) 2011 Tom Drummond ([email protected]),
// Ed Rosten ([email protected]), Gerhard Reitmayr ([email protected])
//All rights reserved.
//
//Redistribution and use in source and binary forms, with or without
//modification, are permitted provided that the following conditions
//are met:
//1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND OTHER CONTRIBUTORS ``AS IS''
//AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
//IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
//ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR OTHER CONTRIBUTORS BE
//LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
//SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
//INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
//CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
//ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
//POSSIBILITY OF SUCH DAMAGE.
/* This code mostly made by copying from sim3.h !! */
#ifndef TOON_INCLUDE_SIM2_H
#define TOON_INCLUDE_SIM2_H
#include <TooN/se2.h>
#include <TooN/sim3.h>
namespace TooN {
/// Represent a two-dimensional Similarity transformation (a rotation, a uniform scale and a translation).
/// This can be represented by a \f$2\times 3\f$ matrix operating on a homogeneous co-ordinate,
/// so that a vector \f$\underline{x}\f$ is transformed to a new location \f$\underline{x}'\f$
/// by
/// \f[\begin{aligned}\underline{x}' &= E\times\underline{x}\\ \begin{bmatrix}x'\\y'\end{bmatrix} &= \begin{pmatrix}r_{11} & r_{12} & t_1\\r_{21} & r_{22} & t_2\end{pmatrix}\begin{bmatrix}x\\y\\1\end{bmatrix}\end{aligned}\f]
///
/// This transformation is a member of the Lie group SIM2. These can be parameterised with
/// four numbers (in the space of the Lie Algebra). In this class, the first two parameters are a
/// translation vector while the third is the amount of rotation in the plane as for SO2. The forth is the logarithm of the scale factor.
/// @ingroup gTransforms
template <typename Precision = DefaultPrecision>
class SIM2 {
public:
/// Default constructor. Initialises the the rotation to zero (the identity), the scale factor to one and the translation to zero
SIM2() : my_scale(1) {}
template <class A> SIM2(const SO2<Precision>& R, const Vector<2,Precision,A>& T, const Precision s) : my_se2(R,T), my_scale(s) {}
template <int S, class P, class A> SIM2(const Vector<S, P, A> & v) { *this = exp(v); }
/// Returns the rotation part of the transformation as a SO2
SO2<Precision> & get_rotation(){return my_se2.get_rotation();}
/// @overload
const SO2<Precision> & get_rotation() const {return my_se2.get_rotation();}
/// Returns the translation part of the transformation as a Vector
Vector<2, Precision> & get_translation() {return my_se2.get_translation();}
/// @overload
const Vector<2, Precision> & get_translation() const {return my_se2.get_translation();}
/// Returns the scale factor of the transformation
Precision & get_scale() {return my_scale;}
/// @overload
const Precision & get_scale() const {return my_scale;}
/// Exponentiate a Vector in the Lie Algebra to generate a new SIM2.
/// See the Detailed Description for details of this vector.
/// @param vect The Vector to exponentiate
template <int S, typename P, typename A>
static inline SIM2 exp(const Vector<S,P, A>& vect);
/// Take the logarithm of the matrix, generating the corresponding vector in the Lie Algebra.
/// See the Detailed Description for details of this vector.
static inline Vector<4, Precision> ln(const SIM2& se2);
/// @overload
Vector<4, Precision> ln() const { return SIM2::ln(*this); }
/// compute the inverse of the transformation
SIM2 inverse() const {
const SO2<Precision> & rinv = get_rotation().inverse();
const Precision inv_scale = 1/get_scale();
return SIM2(rinv, -(rinv*(inv_scale*get_translation())), inv_scale);
};
/// Right-multiply by another SIM2 (concatenate the two transformations)
/// @param rhs The multipier
template <typename P>
SIM2<typename Internal::MultiplyType<Precision,P>::type> operator *(const SIM2<P>& rhs) const {
return SIM2<typename Internal::MultiplyType<Precision,P>::type>(get_rotation()*rhs.get_rotation(), get_translation() + get_rotation() * (get_scale()*rhs.get_translation()), get_scale() * rhs.get_scale());
}
/// Self right-multiply by another SIM2 (concatenate the two transformations)
/// @param rhs The multipier
inline SIM2& operator *=(const SIM2& rhs) {
*this = *this * rhs;
return *this;
}
/// returns the generators for the Lie group. These are a set of matrices that
/// form a basis for the vector space of the Lie algebra.
/// - 0 is translation in x
/// - 1 is translation in y
/// - 2 is rotation in the plane
/// - 3 is uniform scale
static inline Matrix<3,3, Precision> generator(int i) {
Matrix<3,3,Precision> result(Zeros);
switch(i){
case 0:
case 1:
result(i,2) = 1;
break;
case 2:
result(0,1) = -1;
result(1,0) = 1;
break;
case 3:
result(0,0) = 1;
result(1,1) = 1;
break;
}
return result;
}
/// transfers a vector in the Lie algebra, from one coord frame to another
/// so that exp(adjoint(vect)) = (*this) * exp(vect) * (this->inverse())
template<typename Accessor>
Vector<4, Precision> adjoint(const Vector<4,Precision, Accessor> & vect) const {
Vector<4, Precision> result;
result[2] = vect[2];
result.template slice<0,2>() = get_rotation() * vect.template slice<0,2>();
result[0] += vect[2] * get_translation()[1];
result[1] -= vect[2] * get_translation()[0];
return result;
}
template <typename Accessor>
Matrix<4,4,Precision> adjoint(const Matrix<4,4,Precision,Accessor>& M) const {
Matrix<4,4,Precision> result;
for(int i=0; i<4; ++i)
result.T()[i] = adjoint(M.T()[i]);
for(int i=0; i<4; ++i)
result[i] = adjoint(result[i]);
return result;
}
private:
SE2<Precision> my_se2;
Precision my_scale;
};
/// Write an SIM2 to a stream
/// @relates SIM2
template <class Precision>
inline std::ostream& operator<<(std::ostream& os, const SIM2<Precision> & rhs){
std::streamsize fw = os.width();
for(int i=0; i<2; i++){
os.width(fw);
os << rhs.get_rotation().get_matrix()[i] * rhs.get_scale();
os.width(fw);
os << rhs.get_translation()[i] << '\n';
}
return os;
}
/// Read an SIM2 from a stream
/// @relates SIM2
template <class Precision>
inline std::istream& operator>>(std::istream& is, SIM2<Precision>& rhs){
for(int i=0; i<2; i++)
is >> rhs.get_rotation().my_matrix[i].ref() >> rhs.get_translation()[i];
rhs.get_scale() = (norm(rhs.get_rotation().my_matrix[0]) + norm(rhs.get_rotation().my_matrix[1]))/2;
rhs.get_rotation().coerce();
return is;
}
//////////////////
// operator * //
// SIM2 * Vector //
//////////////////
namespace Internal {
template<int S, typename P, typename PV, typename A>
struct SIM2VMult;
}
template<int S, typename P, typename PV, typename A>
struct Operator<Internal::SIM2VMult<S,P,PV,A> > {
const SIM2<P> & lhs;
const Vector<S,PV,A> & rhs;
Operator(const SIM2<P> & l, const Vector<S,PV,A> & r ) : lhs(l), rhs(r) {}
template <int S0, typename P0, typename A0>
void eval(Vector<S0, P0, A0> & res ) const {
SizeMismatch<3,S>::test(3, rhs.size());
res.template slice<0,2>()=lhs.get_rotation()*(lhs.get_scale()*rhs.template slice<0,2>());
res.template slice<0,2>()+=lhs.get_translation() * rhs[2];
res[2] = rhs[2];
}
int size() const { return 3; }
};
/// Right-multiply with a Vector<3>
/// @relates SIM2
template<int S, typename P, typename PV, typename A>
inline Vector<3, typename Internal::MultiplyType<P,PV>::type> operator*(const SIM2<P> & lhs, const Vector<S,PV,A>& rhs){
return Vector<3, typename Internal::MultiplyType<P,PV>::type>(Operator<Internal::SIM2VMult<S,P,PV,A> >(lhs,rhs));
}
/// Right-multiply with a Vector<2> (special case, extended to be a homogeneous vector)
/// @relates SIM2
template <typename P, typename PV, typename A>
inline Vector<2, typename Internal::MultiplyType<P,PV>::type> operator*(const SIM2<P>& lhs, const Vector<2,PV,A>& rhs){
return lhs.get_translation() + lhs.get_rotation() * (lhs.get_scale() * rhs);
}
//////////////////
// operator * //
// Vector * SIM2 //
//////////////////
namespace Internal {
template<int S, typename P, typename PV, typename A>
struct VSIM2Mult;
}
template<int S, typename P, typename PV, typename A>
struct Operator<Internal::VSIM2Mult<S,P,PV,A> > {
const Vector<S,PV,A> & lhs;
const SIM2<P> & rhs;
Operator(const Vector<S,PV,A> & l, const SIM2<P> & r ) : lhs(l), rhs(r) {}
template <int S0, typename P0, typename A0>
void eval(Vector<S0, P0, A0> & res ) const {
SizeMismatch<3,S>::test(3, lhs.size());
res.template slice<0,2>() = (lhs.template slice<0,2>()* rhs.get_scale())*rhs.get_rotation();
res[2] = lhs[2];
res[2] += lhs.template slice<0,2>() * rhs.get_translation();
}
int size() const { return 3; }
};
/// Left-multiply with a Vector<3>
/// @relates SIM2
template<int S, typename P, typename PV, typename A>
inline Vector<3, typename Internal::MultiplyType<PV,P>::type> operator*(const Vector<S,PV,A>& lhs, const SIM2<P> & rhs){
return Vector<3, typename Internal::MultiplyType<PV,P>::type>(Operator<Internal::VSIM2Mult<S, P,PV,A> >(lhs,rhs));
}
//////////////////
// operator * //
// SIM2 * Matrix //
//////////////////
namespace Internal {
template <int R, int C, typename PM, typename A, typename P>
struct SIM2MMult;
}
template<int R, int Cols, typename PM, typename A, typename P>
struct Operator<Internal::SIM2MMult<R, Cols, PM, A, P> > {
const SIM2<P> & lhs;
const Matrix<R,Cols,PM,A> & rhs;
Operator(const SIM2<P> & l, const Matrix<R,Cols,PM,A> & r ) : lhs(l), rhs(r) {}
template <int R0, int C0, typename P0, typename A0>
void eval(Matrix<R0, C0, P0, A0> & res ) const {
SizeMismatch<3,R>::test(3, rhs.num_rows());
for(int i=0; i<rhs.num_cols(); ++i)
res.T()[i] = lhs * rhs.T()[i];
}
int num_cols() const { return rhs.num_cols(); }
int num_rows() const { return 3; }
};
/// Right-multiply with a Matrix<3>
/// @relates SIM2
template <int R, int Cols, typename PM, typename A, typename P>
inline Matrix<3,Cols, typename Internal::MultiplyType<P,PM>::type> operator*(const SIM2<P> & lhs, const Matrix<R,Cols,PM, A>& rhs){
return Matrix<3,Cols,typename Internal::MultiplyType<P,PM>::type>(Operator<Internal::SIM2MMult<R, Cols, PM, A, P> >(lhs,rhs));
}
//////////////////
// operator * //
// Matrix * SIM2 //
//////////////////
namespace Internal {
template <int Rows, int C, typename PM, typename A, typename P>
struct MSIM2Mult;
}
template<int Rows, int C, typename PM, typename A, typename P>
struct Operator<Internal::MSIM2Mult<Rows, C, PM, A, P> > {
const Matrix<Rows,C,PM,A> & lhs;
const SIM2<P> & rhs;
Operator( const Matrix<Rows,C,PM,A> & l, const SIM2<P> & r ) : lhs(l), rhs(r) {}
template <int R0, int C0, typename P0, typename A0>
void eval(Matrix<R0, C0, P0, A0> & res ) const {
SizeMismatch<3, C>::test(3, lhs.num_cols());
for(int i=0; i<lhs.num_rows(); ++i)
res[i] = lhs[i] * rhs;
}
int num_cols() const { return 3; }
int num_rows() const { return lhs.num_rows(); }
};
/// Left-multiply with a Matrix<3>
/// @relates SIM2
template <int Rows, int C, typename PM, typename A, typename P>
inline Matrix<Rows,3, typename Internal::MultiplyType<PM,P>::type> operator*(const Matrix<Rows,C,PM, A>& lhs, const SIM2<P> & rhs ){
return Matrix<Rows,3,typename Internal::MultiplyType<PM,P>::type>(Operator<Internal::MSIM2Mult<Rows, C, PM, A, P> >(lhs,rhs));
}
template <typename Precision>
template <int S, typename PV, typename Accessor>
inline SIM2<Precision> SIM2<Precision>::exp(const Vector<S, PV, Accessor>& mu){
SizeMismatch<4,S>::test(4, mu.size());
static const Precision one_6th = 1.0/6.0;
static const Precision one_20th = 1.0/20.0;
using std::exp;
SIM2<Precision> result;
// rotation
const Precision theta = mu[2];
result.get_rotation() = SO2<Precision>::exp(theta);
// scale
result.get_scale() = exp(mu[3]);
// translation
const Vector<3, Precision> coeff = Internal::compute_rodrigues_coefficients_sim3(mu[3], theta);
const Vector<2, Precision> cross = makeVector( -theta * mu[1], theta * mu[0]);
result.get_translation() = coeff[2] * mu.template slice<0,2>() + TooN::operator*(coeff[1], cross);
return result;
}
template <typename Precision>
inline Vector<4, Precision> SIM2<Precision>::ln(const SIM2<Precision> & sim2) {
using std::log;
Vector<4, Precision> result;
// rotation
const Precision theta = sim2.get_rotation().ln();
result[2] = theta;
// scale
result[3] = log(sim2.get_scale());
// translation
const Vector<3, Precision> coeff = Internal::compute_rodrigues_coefficients_sim3(result[3], theta);
Matrix<2,2, Precision> cross = Zeros; cross(0,1) = -theta; cross(1,0) = theta;
const Matrix<2,2, Precision> W = coeff[2] * Identity + coeff[1] * cross;
result.template slice<0,2>() = gaussian_elimination(W, sim2.get_translation());
return result;
}
#if 0
/// Multiply a SO2 with and SE2
/// @relates SE2
/// @relates SO2
template <typename Precision>
inline SE2<Precision> operator*(const SO2<Precision> & lhs, const SE2<Precision>& rhs){
return SE2<Precision>( lhs*rhs.get_rotation(), lhs*rhs.get_translation());
}
#endif
}
#endif