-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMpiAlg.py
99 lines (83 loc) · 2.57 KB
/
MpiAlg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python3
from mpi4py import MPI
import random
import time
# Initialize MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
# Define sorting algorithms
def bubble_sort(arr):
n = len(arr)
for i in range(n):
for j in range(0, n-i-1):
if arr[j] > arr[j+1]:
arr[j], arr[j+1] = arr[j+1], arr[j]
return arr
def merge_sort(arr):
if len(arr) > 1:
mid = len(arr) // 2
L = arr[:mid]
R = arr[mid:]
merge_sort(L)
merge_sort(R)
i = j = k = 0
while i < len(L) and j < len(R):
if L[i] < R[j]:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
k += 1
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
return arr
def selection_sort(arr):
for i in range(len(arr)):
min_idx = i
for j in range(i+1, len(arr)):
if arr[min_idx] > arr[j]:
min_idx = j
arr[i], arr[min_idx] = arr[min_idx], arr[i]
return arr
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less_than_pivot = [x for x in arr[1:] if x <= pivot]
greater_than_pivot = [x for x in arr[1:] if x > pivot]
return quick_sort(less_than_pivot) + [pivot] + quick_sort(greater_than_pivot)
# Define sorting algorithms and their names for easy iteration
sort_algorithms = {
"Bubble Sort": bubble_sort,
"Merge Sort": merge_sort,
"Selection Sort": selection_sort,
"Quick Sort": quick_sort
}
# Split array sizes across nodes (simplified example)
array_sizes = [500, 1000, 2000, 5000, 10000, 20000, 50000]
local_array_size = array_sizes[rank % len(array_sizes)] # Simplified distribution
# Generate a random list of integers for the assigned array size
arr = [random.randint(0, 10000) for _ in range(local_array_size)]
# Execute sorting algorithms on the assigned array size
results = {}
for name, algorithm in sort_algorithms.items():
start_time = time.time_ns()
algorithm(arr.copy()) # Assuming the sorting function modifies the array in place
end_time = time.time_ns()
dur_microseconds = (end_time - start_time) / 1000
results[name] = dur_microseconds
# Gather results at the master node
all_results = comm.gather(results, root=0)
# Master node aggregates and prints results
if rank == 0:
# Aggregate and print results (to be implemented)
pass