-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcontroller2d.py
138 lines (116 loc) · 4.5 KB
/
controller2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
"""
2D Controller Class to be used for waypoint following demo.
"""
import numpy as np
from collections import deque
# sampling time
dt = 0.1
class Controller2D(object):
def __init__(self, waypoints):
self._current_x = 0
self._current_y = 0
self._current_yaw = 0
self._current_speed = 0
self._desired_speed = 0
self._current_frame = 0
self._current_timestamp = 0
self.throttle = 0
self.brake = 0
self.steer = 0
self._waypoints = waypoints
self._conv_rad_to_steer = 180.0 / 70.0 / np.pi
self._pi = np.pi
self._2pi = 2.0 * np.pi
self.e_buffer = deque(maxlen=20)
self._e = 0
# parameters for pid speed controller
self.K_P = 1
self.K_D = 0.001
self.K_I = 0.3
def update_values(self, x, y, yaw, speed):
self._current_x = x
self._current_y = y
self._current_yaw = yaw
self._current_speed = speed
def update_desired_speed(self):
min_idx = 0
min_dist = float("inf")
for i in range(len(self._waypoints)):
dist = np.linalg.norm(np.array([
self._waypoints[i][0] - self._current_x,
self._waypoints[i][1] - self._current_y]))
if dist < min_dist:
min_dist = dist
min_idx = i
if min_idx < len(self._waypoints) - 1:
desired_speed = self._waypoints[min_idx][2]
else:
desired_speed = self._waypoints[-1][2]
if desired_speed <= 9:
self._desired_speed = desired_speed
else:
self._desired_speed = desired_speed - 9
def update_waypoints(self, new_waypoints):
self._waypoints = new_waypoints
def update_controls(self):
# update status
x = self._current_x
y = self._current_y
yaw = self._current_yaw
v = self._current_speed
self.update_desired_speed()
v_desired = self._desired_speed
waypoints = self._waypoints
# ==================================
# LONGITUDINAL CONTROLLER, using PID speed controller
# ==================================
self._e = v_desired - v # v_desired
self.e_buffer.append(self._e)
if len(self.e_buffer) >= 2:
_de = (self.e_buffer[-1] - self.e_buffer[-2]) / dt
_ie = sum(self.e_buffer) * dt
else:
_de = 0.0
_ie = 0.0
self.throttle = np.clip((self.K_P * self._e) + (self.K_D * _de / dt) + (self.K_I * _ie * dt), -1.0, 1.0)
# ==================================
# LATERAL CONTROLLER, using stanley steering controller for lateral control.
# ==================================
k_e = 0.3
k_v = 20
# 1. calculate heading error
yaw_path = np.arctan2(waypoints[-1][1] - waypoints[0][1], waypoints[-1][0] - waypoints[0][0])
yaw_diff = yaw_path - yaw
if yaw_diff > np.pi:
yaw_diff -= 2 * np.pi
if yaw_diff < - np.pi:
yaw_diff += 2 * np.pi
# 2. calculate crosstrack error
current_xy = np.array([x, y])
crosstrack_error = np.min(np.sum((current_xy - np.array(waypoints)[:, :2]) ** 2, axis=1))
yaw_cross_track = np.arctan2(y - waypoints[0][1], x - waypoints[0][0])
yaw_path2ct = yaw_path - yaw_cross_track
if yaw_path2ct > np.pi:
yaw_path2ct -= 2 * np.pi
if yaw_path2ct < - np.pi:
yaw_path2ct += 2 * np.pi
if yaw_path2ct > 0:
crosstrack_error = abs(crosstrack_error)
else:
crosstrack_error = - abs(crosstrack_error)
yaw_diff_crosstrack = np.arctan(k_e * crosstrack_error / (k_v + v))
# print(crosstrack_error, yaw_diff, yaw_diff_crosstrack)
# 3. control low
steer_expect = yaw_diff + yaw_diff_crosstrack
if steer_expect > np.pi:
steer_expect -= 2 * np.pi
if steer_expect < - np.pi:
steer_expect += 2 * np.pi
steer_expect = min(1.22, steer_expect)
steer_expect = max(-1.22, steer_expect)
# 4. update
steer_output = steer_expect
# Convert radians to [-1, 1]
input_steer = self._conv_rad_to_steer * steer_output
# Clamp the steering command to valid bounds
self.steer = np.fmax(np.fmin(input_steer, 1.0), -1.0)