-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathreplknet.py
353 lines (310 loc) · 17.5 KB
/
replknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs (https://arxiv.org/abs/2203.06717)
# Github source: https://github.com/DingXiaoH/RepLKNet-pytorch
# Licensed under The MIT License [see LICENSE for details]
# Based on ConvNeXt, timm, DINO and DeiT code bases
# https://github.com/facebookresearch/ConvNeXt
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath
import sys
import os
def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias):
if type(kernel_size) is int:
use_large_impl = kernel_size > 5
else:
assert len(kernel_size) == 2 and kernel_size[0] == kernel_size[1]
use_large_impl = kernel_size[0] > 5
has_large_impl = 'LARGE_KERNEL_CONV_IMPL' in os.environ
if has_large_impl and in_channels == out_channels and out_channels == groups and use_large_impl and stride == 1 and padding == kernel_size // 2 and dilation == 1:
sys.path.append(os.environ['LARGE_KERNEL_CONV_IMPL'])
# Please follow the instructions https://github.com/DingXiaoH/RepLKNet-pytorch/blob/main/README.md
# export LARGE_KERNEL_CONV_IMPL=absolute_path_to_where_you_cloned_the_example (i.e., depthwise_conv2d_implicit_gemm.py)
# TODO more efficient PyTorch implementations of large-kernel convolutions. Pull requests are welcomed.
# Or you may try MegEngine. We have integrated an efficient implementation into MegEngine and it will automatically use it.
from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias)
else:
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
use_sync_bn = False
def enable_sync_bn():
global use_sync_bn
use_sync_bn = True
def get_bn(channels):
if use_sync_bn:
return nn.SyncBatchNorm(channels)
else:
return nn.BatchNorm2d(channels)
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups, dilation=1):
if padding is None:
padding = kernel_size // 2
result = nn.Sequential()
result.add_module('conv', get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False))
result.add_module('bn', get_bn(out_channels))
return result
def conv_bn_relu(in_channels, out_channels, kernel_size, stride, padding, groups, dilation=1):
if padding is None:
padding = kernel_size // 2
result = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=groups, dilation=dilation)
result.add_module('nonlinear', nn.ReLU())
return result
def fuse_bn(conv, bn):
kernel = conv.weight
running_mean = bn.running_mean
running_var = bn.running_var
gamma = bn.weight
beta = bn.bias
eps = bn.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class ReparamLargeKernelConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
stride, groups,
small_kernel,
small_kernel_merged=False):
super(ReparamLargeKernelConv, self).__init__()
self.kernel_size = kernel_size
self.small_kernel = small_kernel
# We assume the conv does not change the feature map size, so padding = k//2. Otherwise, you may configure padding as you wish, and change the padding of small_conv accordingly.
padding = kernel_size // 2
if small_kernel_merged:
self.lkb_reparam = get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=1, groups=groups, bias=True)
else:
self.lkb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=1, groups=groups)
if small_kernel is not None:
assert small_kernel <= kernel_size, 'The kernel size for re-param cannot be larger than the large kernel!'
self.small_conv = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=small_kernel,
stride=stride, padding=small_kernel//2, groups=groups, dilation=1)
def forward(self, inputs):
if hasattr(self, 'lkb_reparam'):
out = self.lkb_reparam(inputs)
else:
out = self.lkb_origin(inputs)
if hasattr(self, 'small_conv'):
out += self.small_conv(inputs)
return out
def get_equivalent_kernel_bias(self):
eq_k, eq_b = fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
if hasattr(self, 'small_conv'):
small_k, small_b = fuse_bn(self.small_conv.conv, self.small_conv.bn)
eq_b += small_b
# add to the central part
eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4)
return eq_k, eq_b
def merge_kernel(self):
eq_k, eq_b = self.get_equivalent_kernel_bias()
self.lkb_reparam = get_conv2d(in_channels=self.lkb_origin.conv.in_channels,
out_channels=self.lkb_origin.conv.out_channels,
kernel_size=self.lkb_origin.conv.kernel_size, stride=self.lkb_origin.conv.stride,
padding=self.lkb_origin.conv.padding, dilation=self.lkb_origin.conv.dilation,
groups=self.lkb_origin.conv.groups, bias=True)
self.lkb_reparam.weight.data = eq_k
self.lkb_reparam.bias.data = eq_b
self.__delattr__('lkb_origin')
if hasattr(self, 'small_conv'):
self.__delattr__('small_conv')
class ConvFFN(nn.Module):
def __init__(self, in_channels, internal_channels, out_channels, drop_path):
super().__init__()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.preffn_bn = get_bn(in_channels)
self.pw1 = conv_bn(in_channels=in_channels, out_channels=internal_channels, kernel_size=1, stride=1, padding=0, groups=1)
self.pw2 = conv_bn(in_channels=internal_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, groups=1)
self.nonlinear = nn.GELU()
def forward(self, x):
out = self.preffn_bn(x)
out = self.pw1(out)
out = self.nonlinear(out)
out = self.pw2(out)
return x + self.drop_path(out)
class RepLKBlock(nn.Module):
def __init__(self, in_channels, dw_channels, block_lk_size, small_kernel, drop_path, small_kernel_merged=False):
super().__init__()
self.pw1 = conv_bn_relu(in_channels, dw_channels, 1, 1, 0, groups=1)
self.pw2 = conv_bn(dw_channels, in_channels, 1, 1, 0, groups=1)
self.large_kernel = ReparamLargeKernelConv(in_channels=dw_channels, out_channels=dw_channels, kernel_size=block_lk_size,
stride=1, groups=dw_channels, small_kernel=small_kernel, small_kernel_merged=small_kernel_merged)
self.lk_nonlinear = nn.ReLU()
self.prelkb_bn = get_bn(in_channels)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
print('drop path:', self.drop_path)
def forward(self, x):
out = self.prelkb_bn(x)
out = self.pw1(out)
out = self.large_kernel(out)
out = self.lk_nonlinear(out)
out = self.pw2(out)
return x + self.drop_path(out)
class RepLKNetStage(nn.Module):
def __init__(self, channels, num_blocks, stage_lk_size, drop_path,
small_kernel, dw_ratio=1, ffn_ratio=4,
use_checkpoint=False, # train with torch.utils.checkpoint to save memory
small_kernel_merged=False,
norm_intermediate_features=False):
super().__init__()
self.use_checkpoint = use_checkpoint
blks = []
for i in range(num_blocks):
block_drop_path = drop_path[i] if isinstance(drop_path, list) else drop_path
# Assume all RepLK Blocks within a stage share the same lk_size. You may tune it on your own model.
replk_block = RepLKBlock(in_channels=channels, dw_channels=int(channels * dw_ratio), block_lk_size=stage_lk_size,
small_kernel=small_kernel, drop_path=block_drop_path, small_kernel_merged=small_kernel_merged)
convffn_block = ConvFFN(in_channels=channels, internal_channels=int(channels * ffn_ratio), out_channels=channels,
drop_path=block_drop_path)
blks.append(replk_block)
blks.append(convffn_block)
self.blocks = nn.ModuleList(blks)
if norm_intermediate_features:
self.norm = get_bn(channels) # Only use this with RepLKNet-XL on downstream tasks
else:
self.norm = nn.Identity()
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x) # Save training memory
else:
x = blk(x)
return x
class RepLKNet(nn.Module):
def __init__(self, large_kernel_sizes, layers, channels, drop_path_rate, small_kernel,
dw_ratio=1, ffn_ratio=4, in_channels=3, num_classes=1000, out_indices=None,
use_checkpoint=False,
small_kernel_merged=False,
use_sync_bn=True,
norm_intermediate_features=False # for RepLKNet-XL on COCO and ADE20K, use an extra BN to normalize the intermediate feature maps then feed them into the heads
):
super().__init__()
if num_classes is None and out_indices is None:
raise ValueError('must specify one of num_classes (for pretraining) and out_indices (for downstream tasks)')
elif num_classes is not None and out_indices is not None:
raise ValueError('cannot specify both num_classes (for pretraining) and out_indices (for downstream tasks)')
elif num_classes is not None and norm_intermediate_features:
raise ValueError('for pretraining, no need to normalize the intermediate feature maps')
self.out_indices = out_indices
if use_sync_bn:
enable_sync_bn()
base_width = channels[0]
self.use_checkpoint = use_checkpoint
self.norm_intermediate_features = norm_intermediate_features
self.num_stages = len(layers)
self.stem = nn.ModuleList([
conv_bn_relu(in_channels=in_channels, out_channels=base_width, kernel_size=3, stride=2, padding=1, groups=1),
conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=3, stride=1, padding=1, groups=base_width),
conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=1, stride=1, padding=0, groups=1),
conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=3, stride=2, padding=1, groups=base_width)])
# stochastic depth. We set block-wise drop-path rate. The higher level blocks are more likely to be dropped. This implementation follows Swin.
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))]
self.stages = nn.ModuleList()
self.transitions = nn.ModuleList()
for stage_idx in range(self.num_stages):
layer = RepLKNetStage(channels=channels[stage_idx], num_blocks=layers[stage_idx],
stage_lk_size=large_kernel_sizes[stage_idx],
drop_path=dpr[sum(layers[:stage_idx]):sum(layers[:stage_idx + 1])],
small_kernel=small_kernel, dw_ratio=dw_ratio, ffn_ratio=ffn_ratio,
use_checkpoint=use_checkpoint, small_kernel_merged=small_kernel_merged,
norm_intermediate_features=norm_intermediate_features)
self.stages.append(layer)
if stage_idx < len(layers) - 1:
transition = nn.Sequential(
conv_bn_relu(channels[stage_idx], channels[stage_idx + 1], 1, 1, 0, groups=1),
conv_bn_relu(channels[stage_idx + 1], channels[stage_idx + 1], 3, stride=2, padding=1, groups=channels[stage_idx + 1]))
self.transitions.append(transition)
if num_classes is not None:
self.norm = get_bn(channels[-1])
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(channels[-1], num_classes)
def forward_features(self, x):
x = self.stem[0](x)
for stem_layer in self.stem[1:]:
if self.use_checkpoint:
x = checkpoint.checkpoint(stem_layer, x) # save memory
else:
x = stem_layer(x)
if self.out_indices is None:
# Just need the final output
for stage_idx in range(self.num_stages):
x = self.stages[stage_idx](x)
if stage_idx < self.num_stages - 1:
x = self.transitions[stage_idx](x)
return x
else:
# Need the intermediate feature maps
outs = []
for stage_idx in range(self.num_stages):
x = self.stages[stage_idx](x)
if stage_idx in self.out_indices:
outs.append(self.stages[stage_idx].norm(x)) # For RepLKNet-XL normalize the features before feeding them into the heads
if stage_idx < self.num_stages - 1:
x = self.transitions[stage_idx](x)
return outs
def forward(self, x):
x = self.forward_features(x)
if self.out_indices:
return x
else:
x = self.norm(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.head(x)
return x
def structural_reparam(self):
for m in self.modules():
if hasattr(m, 'merge_kernel'):
m.merge_kernel()
# If your framework cannot automatically fuse BN for inference, you may do it manually.
# The BNs after and before conv layers can be removed.
# No need to call this if your framework support automatic BN fusion.
def deep_fuse_BN(self):
for m in self.modules():
if not isinstance(m, nn.Sequential):
continue
if not len(m) in [2, 3]: # Only handle conv-BN or conv-BN-relu
continue
# If you use a custom Conv2d impl, assume it also has 'kernel_size' and 'weight'
if hasattr(m[0], 'kernel_size') and hasattr(m[0], 'weight') and isinstance(m[1], nn.BatchNorm2d):
conv = m[0]
bn = m[1]
fused_kernel, fused_bias = fuse_bn(conv, bn)
fused_conv = get_conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding, dilation=conv.dilation, groups=conv.groups, bias=True)
fused_conv.weight.data = fused_kernel
fused_conv.bias.data = fused_bias
m[0] = fused_conv
m[1] = nn.Identity()
def create_RepLKNet31B(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False):
return RepLKNet(large_kernel_sizes=[31,29,27,13], layers=[2,2,18,2], channels=[128,256,512,1024],
drop_path_rate=drop_path_rate, small_kernel=5, num_classes=num_classes, use_checkpoint=use_checkpoint,
small_kernel_merged=small_kernel_merged)
def create_RepLKNet31L(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False):
return RepLKNet(large_kernel_sizes=[31,29,27,13], layers=[2,2,18,2], channels=[192,384,768,1536],
drop_path_rate=drop_path_rate, small_kernel=5, num_classes=num_classes, use_checkpoint=use_checkpoint,
small_kernel_merged=small_kernel_merged)
def create_RepLKNetXL(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False):
return RepLKNet(large_kernel_sizes=[27,27,27,13], layers=[2,2,18,2], channels=[256,512,1024,2048],
drop_path_rate=drop_path_rate, small_kernel=None, dw_ratio=1.5,
num_classes=num_classes, use_checkpoint=use_checkpoint,
small_kernel_merged=small_kernel_merged)
if __name__ == '__main__':
model = create_RepLKNet31B(small_kernel_merged=False)
model.eval()
print('------------------- training-time model -------------')
print(model)
x = torch.randn(2, 3, 224, 224)
origin_y = model(x)
model.structural_reparam()
print('------------------- after re-param -------------')
print(model)
reparam_y = model(x)
print('------------------- the difference is ------------------------')
print((origin_y - reparam_y).abs().sum())