forked from dodona-edu/judge-r
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils-df.R
151 lines (137 loc) · 6.4 KB
/
utils-df.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
round_df <- function(x) {
# round all numeric variables
# x: data frame
# signif rounds to 6 significant digits by default
x %>%
dplyr::mutate_if(is.numeric, signif)
}
# Sorting and then just checking for equality isn't good enough. If
# there are near-equal floating point numbers, floating point errors
# can make it so some rows are sorted differently in the expected
# dataframe and the generated dataframe. We fix this by looking in the
# vicinity of the rows after sorting. Note that this vicinity is
# implemented quite naively at the moment, in that we just store the
# index below the first row that wasn't matched yet to determine where
# we start looking, and we don't check any stop condition other than
# getting to the end of the dataframe. This could theoretically result
# in poor performance (in that we would need n^2 expensive
# comparisons), but in practice once we get too far from the original
# row, we won't be able to match the row and the process will stop
# since we will have found a mistake.
compare_data_frames_row_independent <- function(expected, generated, ...) {
expected <- dplyr::arrange(expected, dplyr::across(everything()))
generated <- dplyr::arrange(generated, dplyr::across(everything()))
mistakes_found <- !isTRUE(all.equal(nrow(expected), nrow(generated)))
used_rows <- c()
definitely_used <- 0
i <- 1
while(i <= nrow(generated) && !mistakes_found) {
j <- definitely_used + 1
while (j <= nrow(expected) && (is.element(j, used_rows) || !isTRUE(all.equal(generated[i,], expected[j,], ...)))) {
j <- j + 1
}
mistakes_found <- isTRUE(all.equal(j, nrow(expected) + 1))
used_rows <- c(used_rows, j)
while (is.element(definitely_used + 1, used_rows)) {
definitely_used <- definitely_used + 1
}
i <- i + 1
}
return(!mistakes_found)
}
#df1 is the dataframe from which the order of collumns and rows will be preserved when ignore_col_order or ignore_row_order is set to TRUE
dataframe_all_equal <- function(df1, df2, ignore_col_order = TRUE, ignore_row_order = FALSE, after_error = 2, before_error = 2) {
# rounding to avoid identical testing
df1 <- round_df(df1)
df2 <- round_df(df2)
# change the column order of df2 to match df1 if needed
if (ignore_col_order){
df2 <- df2[intersect(names(df1), names(df2))]
}
error <- FALSE
textual_feedback <- ""
if (ignore_row_order){
no_match_count <- 0
df2_matches <- c()
past_error <- 0
# loop over every df1 row and find its match
df1_row <- 0
while((df1_row < nrow(df1) || length(df2_matches) < nrow(df2)) &&
(past_error < after_error + no_match_count || df1_row <= after_error + before_error + no_match_count)){
df1_row <- df1_row + 1
df2_row_options <- c(1:nrow(df2))[!c(1:nrow(df2)) %in% df2_matches]
if(error){
past_error <- past_error + 1
}
if(df1_row > nrow(df1)){# df1 is missing a row
# if we reach this case we are sure that df2_row_options contains at least 1 element
df2_matches <- c(df2_matches, df2_row_options[1])
if(!error){
error <- TRUE
textual_feedback <- "Your dataframe is missing at least one row."
}
} else if (length(df2_row_options) == 0){# no possible matches left, df1 has a row too much
df2_matches <- c(df2_matches, NA)
if(!error){
error <- TRUE
textual_feedback <- "Your dataframe contains at least one row too much."
}
} else {# search a match for this row
df2_row_ind <- 1
while(df2_row_ind <= length(df2_row_options) &&
#TODO write a function that can also test for row.names so that row names can be displayed in the future
#look into: !isTRUE(all.equal(df1[df1_row,], df2[df2_row_options[df2_row_ind],], use.names = TRUE,check.attributes = FALSE)))
!isTRUE(dplyr::all_equal(df1[df1_row,], df2[df2_row_options[df2_row_ind],], ignore_col_order = FALSE, ignore_row_order = FALSE)))
{
df2_row_ind <- df2_row_ind + 1
}
if(df2_row_ind > length(df2_row_options)){ # no match found
no_match_count <- no_match_count + 1
if(!error){
error <- TRUE
textual_feedback <- "Your dataframe contains at least one row which is not found in the solution."
}
} else { # match found!!
df2_matches <- c(df2_matches, df2_row_options[df2_row_ind])
}
}
}
# add unmatched rows from df2 to df2_matches if needed
df2_row_options <- c(1:nrow(df2))[!c(1:nrow(df2)) %in% df2_matches]
to_add <- min(after_error - (past_error - no_match_count), nrow(df1) - length(df2_matches))
if(to_add > 0){
df2_matches <- c(df2_matches, df2_row_options[1:to_add])
}
eind <- length(df2_matches)
begin <- max(1, eind - (before_error + after_error))
return(list(
'equal' = !error,
'df1_rows' = begin:eind,
'df2_rows' = tail(df2_matches, after_error + before_error + 1),
'df2_cols' = names(df2),
"feedback" = textual_feedback
))
} else {
df_row <- 0
past_error <- 0
while(df_row < max(nrow(df1), nrow(df2)) && (past_error < after_error || df_row <= after_error + before_error + 1)){
df_row <- df_row + 1
if(error){
past_error <- past_error + 1
}
if (!identical(df1[df_row,], df2[df_row,]) && !error){
textual_feedback <- paste0("unexpected row with rownumber: ", df_row)
error <- TRUE
}
}
eind <- df_row
begin <- max(1, eind - (after_error + before_error))
return(list(
'equal' = !error,
'df1_rows' = begin:eind,
'df2_rows' = begin:eind,
'df2_cols' = names(df2),
'feedback' = textual_feedback
))
}
}