forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimization.py
212 lines (185 loc) · 8.24 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Optimization and learning rate scheduling."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import numpy as np
import re
import paddle.fluid as fluid
from propeller import log
def linear_warmup_decay(learning_rate, warmup_steps, num_train_steps):
""" Applies linear warmup of learning rate from 0 and decay to 0."""
with fluid.default_main_program()._lr_schedule_guard():
lr = fluid.layers.tensor.create_global_var(
shape=[1],
value=0.0,
dtype='float32',
persistable=True,
name="scheduled_learning_rate")
global_step = fluid.layers.learning_rate_scheduler._decay_step_counter(
)
with fluid.layers.control_flow.Switch() as switch:
with switch.case(global_step < warmup_steps):
warmup_lr = learning_rate * (global_step / warmup_steps)
fluid.layers.tensor.assign(warmup_lr, lr)
with switch.default():
decayed_lr = fluid.layers.learning_rate_scheduler.polynomial_decay(
learning_rate=learning_rate,
decay_steps=num_train_steps,
end_learning_rate=0.0,
power=1.0,
cycle=False)
fluid.layers.tensor.assign(decayed_lr, lr)
return lr
def layer_decay(param, param_last, learning_rate, decay_rate, n_layers):
#encoder params
delta = param - param_last
encoder_layer_m = re.search("encoder_layer_([0-9]*)_", param.name)
if encoder_layer_m is not None:
layer = int(encoder_layer_m.group(1))
ratio = decay_rate**(n_layers + 1 - layer)
log.info('layer deay %s: ratio %s.' % (param.name, ratio))
param_update = param + (ratio - 1) * delta
elif "embedding" in param.name:
ratio = decay_rate**(n_layers + 2)
param_update = param + (ratio - 1) * delta
else:
param_update = None
return param_update
def optimization(loss,
warmup_steps,
num_train_steps,
learning_rate,
train_program,
startup_prog,
weight_decay,
scheduler='linear_warmup_decay',
use_fp16=False,
use_lamb=False,
use_dynamic_loss_scaling=False,
init_loss_scaling=1.0,
incr_every_n_steps=1000,
decr_every_n_nan_or_inf=2,
incr_ratio=2.0,
decr_ratio=0.8,
layer_decay_rate=0.0,
n_layers=12):
def exclude_from_weight_decay(param):
name = param.name.rstrip('.master')
if name.find("layer_norm") > -1:
return True
bias_suffix = ["_bias", "_b", ".b_0"]
for suffix in bias_suffix:
if name.endswith(suffix):
return True
return False
if warmup_steps > 0:
if scheduler == 'noam_decay':
scheduled_lr = fluid.layers.learning_rate_scheduler\
.noam_decay(1/(warmup_steps *(learning_rate ** 2)),
warmup_steps)
elif scheduler == 'linear_warmup_decay':
scheduled_lr = linear_warmup_decay(learning_rate, warmup_steps,
num_train_steps)
else:
raise ValueError("Unkown learning rate scheduler, should be "
"'noam_decay' or 'linear_warmup_decay'")
if not use_lamb:
log.debug('using Adam')
optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
else:
log.debug('using Lamb')
optimizer = fluid.optimizer.Lamb(
learning_rate=scheduled_lr,
lamb_weight_decay=weight_decay,
exclude_from_weight_decay_fn=exclude_from_weight_decay)
else:
scheduled_lr = fluid.layers.create_global_var(
name=fluid.unique_name.generate("learning_rate"),
shape=[1],
value=learning_rate,
dtype='float32',
persistable=True)
if not use_lamb:
log.debug('using Adam')
optimizer = fluid.optimizer.Adam(learning_rate=scheduled_lr)
else:
log.debug('using Lamb')
optimizer = fluid.optimizer.Lamb(
learning_rate=scheduled_lr,
lamb_weight_decay=weight_decay,
exclude_from_weight_decay_fn=exclude_from_weight_decay)
optimizer._learning_rate_map[fluid.default_main_program(
)] = scheduled_lr
fluid.clip.set_gradient_clip(
clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))
param_list = dict()
loss_scaling = fluid.layers.create_global_var(
name=fluid.unique_name.generate("loss_scaling"),
shape=[1],
value=init_loss_scaling,
dtype='float32',
persistable=True)
if use_fp16:
from utils.fp16 import create_master_params_grads, master_param_to_train_param, apply_dynamic_loss_scaling
loss *= loss_scaling
param_grads = optimizer.backward(loss)
master_param_grads = create_master_params_grads(
param_grads, train_program, startup_prog, loss_scaling)
for param, _ in master_param_grads:
param_list[param.name] = param * 1.0
param_list[param.name].stop_gradient = True
if use_dynamic_loss_scaling:
apply_dynamic_loss_scaling(
loss_scaling, master_param_grads, incr_every_n_steps,
decr_every_n_nan_or_inf, incr_ratio, decr_ratio)
optimizer.apply_gradients(master_param_grads)
if not use_lamb and weight_decay > 0:
for param, grad in master_param_grads:
if exclude_from_weight_decay(param):
continue
with param.block.program._optimized_guard(
[param, grad]), fluid.framework.name_scope("weight_decay"):
updated_param = param - param_list[
param.name] * weight_decay * scheduled_lr
fluid.layers.assign(output=param, input=updated_param)
master_param_to_train_param(master_param_grads, param_grads,
train_program)
else:
for param in train_program.global_block().all_parameters():
param_list[param.name] = param * 1.0
param_list[param.name].stop_gradient = True
_, param_grads = optimizer.minimize(loss)
if layer_decay_rate > 0:
for param, grad in param_grads:
with param.block.program._optimized_guard(
[param, grad]), fluid.framework.name_scope("layer_decay"):
param_decay = layer_decay(param, param_list[param.name],
scheduled_lr, layer_decay_rate,
n_layers)
if param_decay:
fluid.layers.assign(output=param, input=param_decay)
if not use_lamb and weight_decay > 0:
for param, grad in param_grads:
if exclude_from_weight_decay(param):
continue
with param.block.program._optimized_guard(
[param, grad]), fluid.framework.name_scope("weight_decay"):
updated_param = param - param_list[
param.name] * weight_decay * scheduled_lr
fluid.layers.assign(output=param, input=updated_param)
return scheduled_lr, loss_scaling