forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconstruct_coauthor_graph.py
105 lines (94 loc) · 3.62 KB
/
construct_coauthor_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pgl
import numpy as np
from collections import defaultdict, Counter
import multiprocessing
import tqdm
import time
import pickle as pkl
import numpy as np
import numpy as np
from collections import defaultdict, Counter
import multiprocessing
import time
import pickle as pkl
import numpy as np
root = "dataset_path"
graph_paper2paper = pgl.Graph.load(
os.path.join(root, "paper_to_paper_symmetric_pgl_split"))
graph_paper2author = pgl.Graph.load(
os.path.join(root, "paper_to_author_symmetric_pgl_split_src"))
graph_author2paper = pgl.Graph.load(
os.path.join(root, "paper_to_author_symmetric_pgl_split_dst"))
labels = np.load(
os.path.join(root, "mag240_kddcup2021", "processed", "paper",
"node_label.npy"),
mmap_mode="r")
def find_similar_paper_single(pid):
authors = graph_paper2author.predecessor([pid])[0]
papers, counts = np.unique(
np.concatenate(graph_author2paper.predecessor(authors)),
return_counts=True)
indegree = graph_paper2author.indegree(papers.tolist())
indegree = indegree + graph_paper2author.indegree([pid])[0] - counts
counts = counts / indegree
# select neighbor with following condition
# 1. coauthor jaccard > 0.5
# 2. labels are not NaN
mask = (counts >= 0.5) & (papers != pid) & (
~np.isnan(labels[papers.tolist()]))
papers = papers[mask]
counts = counts[mask]
edges = np.vstack([papers, np.ones_like(papers) * pid])
return edges.T.astype("int64")
def find_similar_paper(start_pid):
all_edges = []
for pid in range(start_pid,
min(graph_paper2paper.num_nodes, start_pid + batch_size)):
edges = find_similar_paper_single(pid)
if len(edges) > 0:
all_edges.append(edges)
return np.concatenate(all_edges, dtype="int64")
def get_edge_feat(batch_start):
batch_size = 5000
batch_end = min(batch_start + batch_size, graph_paper2paper.num_nodes)
last_x = None
last_x_authors = set()
last_x_papers = set()
edges = []
for x in np.arange(batch_start, batch_end):
edges.append(find_similar_paper(x))
return np.concatenate(edges)
if __name__ == "__main__":
batch_size = 5000
dataset = np.arange(0, graph_paper2paper.num_nodes, step=batch_size)
max_workers = 20
edges = []
with multiprocessing.Pool(max_workers) as pool:
chunksize = 1000
imap_unordered_it = pool.imap_unordered(find_similar_paper, dataset,
chunksize)
start = 0
for edge_feat in tqdm.tqdm(imap_unordered_it, total=len(dataset)):
if len(edge_feat) > 0:
edges.append(edge_feat.astype("int64"))
edges = np.concatenate(edges, dtype="int64")
edge_types = np.full([edges.shape[0]], 6, dtype="int32")
g = pgl.Graph(
num_nodes=graph_paper2paper.num_nodes,
edges=edges,
edge_feat={"edge_type": edge_types})
g.adj_dst_index
g.dump(os.path.join(root, "paper_coauthor_paper_symmetric_jc0.5"))